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1. Charles Darwin heute



Kardinal Christoph Schénborn, Finding Design in Nature, commentary in The
New York Times, July 5, 2005

. ... Evolution in the sense of common ancestry might be true, but
evolution in the Neo-Darwinian sense - an unguided, unplanned
process of random variation and natural selection - is not. Any
system of thought that denies or seeks to explain away the
overwhelming evidence for design in biology is ideology, not science.

... Scientific theories that try to explain away the appearance of
design as the result of ,chance and necessity' are not scientific at
all, but ... an abdication of human intelligence."



Peter Schuster. Evolution and design. The Darwinian theory of evolution is a
scientific fact and not an ideology. Complexity 11(1):12-15, 2006

Peter Schuster. Evolution und Design.
Versuch einer Bestandsaufnahme der
Evolutionstheorie.

In: Stephan Otto Horn und Siegfried
Wiedenhofer, Eds.
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., YOUu care for nothing but shooting, dogs and rat-catching“, Robert Darwin told his son,

,=and you will be a disgrace to yourself and all your family“. Yet the feckless boy is
everywhere. Charles Darwin gets so much credit, we can'‘t distinguish evolution from him.

Carl Safina. Darwinism must die so that evolution may live.
The Petw Pork Times, February 12, 2009



Equating evolution with Charles Darwin ignores 150 years of discoveries, including most of
what scientists understand about evolution. Such as Gregor Mendel‘s pattern of heredity
(which gave Darwin's idea of natural selection a mechanism — genetics — by which it could
work), the discovery of DNA (which gave genetics a mechanism and let us see evolutionary
lineages), developmental biology (which gives DNA a mechanism), studies documenting
evolution in nature (which converted the hypothetical to observable fact), evolution‘s role in
medicine and disease (bringing immediate relevance to the topic), and more.

Carl Safina. Darwinism must die so that evolution may live.
The Petw Pork Times, February 12, 2009



By propounding ,Darwinism*, even scientists and science writers perpetuate an impression
that evolution is about one man, one book, one ,theory“. The ninth-century Buddhist master
Lin Chi said, ,If you meet the Buddha on the road, kill him.“ The point is that making a master
teacher into a sacred fetish misses the essence of his teaching. So let us now kill Darwin.

Carl Safina. Darwinism must die so that evolution may live.
The Petw Pork Times, February 12, 2009



2. Darwins Prinzip der natiirlichen Auslese



Drei notwendige Bedingungen fiir Darwinsche Evolution:

1. Vermehrung

2. Variation

3. Selektion

Empirisch erkanntes Prinzip der natiirlichen Auslese
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3. Vermehrung von Molekiilen



James D. Watson, 1928-, and Francis H.C. Crick, 1916-2004
Nobel prize 1962

1953 - 2003 fifty years double helix

The three-dimensional structure of a
short double helical stack of B-DNA
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Complementary replication is
the simplest copying mechanism
of RNA.

Complementarity is determined
by Watson-Crick base pairs:

G=C and A=U
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Biochemistry 22:2544-2559, 1983
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Complementary replication as the simplest molecular mechanism of reproduction
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4. Chemische Kinetik der molekularen Evolution



Drei notwendige Bedingungen fiir Darwinsche Evolution:

1. Vermehrung,

2. Variation, and

3. Selektion.

Variation in Form von Rekombination und/oder Mutation verdndert die
Genotypen wogegen Selektion nur auf den Phdanotypen operiert.

Im Darwinschen Szenario treten Variationen in Form von Rekombinations-
und/oder Mutationsereighissen unkorreliert mit ihren Effekt auf den
Selektionprocess auf und erscheinen daher zufillig.

Alle drei Bedingungen werden nicht nur von zelluldren Organismen erfiillt
sondern auch von Molekiilen in geigneten zellfreien Assays.
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Chemical kinetics of replication and mutation as parallel reactions
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Fitness landscapes showing error thresholds
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5. Evolutionsexperimente mit Molekilen



Evolution of RNA molecules based on Q8 phage

D.R.Mills, R.L.Peterson, S.Spiegelman, An extracellular Darwinian experiment with a
self-duplicating nucleic acid molecule. Proc.Natl.Acad.Sci.USA 58 (1967), 217-224

S.Spiegelman, An approach to the experimental analysis of precellular evolution.
Quart.Rev.Biophys. 4 (1971), 213-253

C.K.Biebricher, Darwinian selection of self-replicating RNA molecules. Evolutionary
Biology 16 (1983), 1-52

G.Bauer, H.Otten, J.S.McCaskill, Travelling waves of in vitro evolving RNA.
Proc.Natl.Acad.Sci.USA 86 (1989), 7937-7941

C.K.Biebricher, W.C.Gardiner, Molecular evolution of RNA in vitro. Biophysical
Chemistry 66 (1997), 179-192

G.Strunk, T.Ederhof, Machines for automated evolution experiments in vitro based on
the serial transfer concept. Biophysical Chemistry 66 (1997), 193-202

F.Ohlenschlager, M.Eigen, 30 years later — A new approach to Sol Spiegelman‘s and
Leslie Orgel‘s in vitro evolutionary studies. Orig.Life Evol.Biosph. 27 (1997), 437-457
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Anwendung der seriellen Uberimpfungstechnik auf RNA-Evolution in Reagenzglas



Evolutionary design of RNA molecules

A.D. Ellington, J.W. Szostak, In vitro selection of RNA molecules that bind specific ligands.
Nature 346 (1990), 818-822

C. Tuerk, L. Gold, SELEX - Systematic evolution of ligands by exponential enrichment: RNA
ligands to bacteriophage T4 DNA polymerase. Science 249 (1990), 505-510

D.P. Bartel, J.W. Szostak, Isolation of new ribozymes from a large pool of random sequences.
Science 261 (1993), 1411-1418

R.D. Jenison, S.C. Gill, A. Pardi, B. Poliski, High-resolution molecular discrimination by RNA.
Science 263 (1994), 1425-1429

Y. Wang, R.R. Rando, Specific binding of aminoglycoside antibiotics to RNA. Chemistry &
Biology 2 (1995), 281-290

L. Jiang, A. K. Suri, R. Fiala, D. J. Patel, Saccharide-RNA recognition in an aminoglycoside
antibiotic-RNA aptamer complex. Chemistry & Biology 4 (1997), 35-50
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tobramycin

B3 CcO®c NN cOHDcOHCcOcaMEc ¢

RNA aptamer, n = 27

Formation of secondary structure of the tobramycin binding RNA aptamer with K, =9 nM

L. Jiang, A. K. Suri, R. Fiala, D. J. Patel, Saccharide-RNA recognition in an aminoglycoside antibiotic-
RNA aptamer complex. Chemistry & Biology 4:35-50 (1997)



The three-dimensional structure of the
tobramycin aptamer complex

L. Jiang, A. K. Suri, R. Fiala, D. J. Patel,
Chemistry & Biology 4:35-50 (1997)
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Artificial evolution in biotechnology and pharmacology

G.F. Joyce. 2004. Directed evolution of nucleic acid enzymes.
Annu.Rev.Biochem. 73:791-836.

C. Jackel, P. Kast, and D. Hilvert. 2008. Protein design by
directed evolution. Annu.Rev.Biophys. 37:153-173.

S.J. Wrenn and P.B. Harbury. 2007. Chemical evolution as a
tool for molecular discovery. Annu.Rev.Biochem. 76:331-349.



6. Simulation der Optimierung von Strukturen



Evolution /n silico

W. Fontana, P. Schuster,
Science 280 (1998), 1451-1455

random individuals. The primer pair used for ganomic
DNA - amplification  1s 5 -TCTCCCTGGATTCT-
CATTTA-3' (forward) and 5'-TCTTTGTCTTCTGT-
TCCACC-3 (reverse). Reactions were performed in
25 l using 1 uret of Tag DNA polymerass with each
primer at 0.4 uM; 200 uM each dATP, dTTP, dGTP,
and dCTP; and PCR butfer [10 mM tris-HCI (pH 8.3),
50 mM KCL,.1.5 mM MgCL] in a cycle condition of
84°C for 1 min and then 35 cycles of 84°C for 30 s,
55°C for 30 5, and 72°C for 30 s followed by 72°C for
B min. PCR products were purified (Qiagen), digested
with Xmn |, and separated in a 2% agarose gel.

32 Ammmlﬂm&yaﬁmmwmn\rw
result in degradation of the transcript [L. Maguat,
Am. J, Hum, Genet. 59, 279 (1996)].

33, Data not shown; a dot blot with poly (A} RNA from
50 human tissues (The Human ANA Master Biot,
7770-1, Clontech Laboratories) was hybridized with
a proba from exons 29 1o 47 of MYD15 using the
same congition as Northemn biot analysis (13).

34, Smith-Magenis syndrome (SMS) is due 1o deletions
of 17p11.2 of various sizes, the smallest of whict
includes MYO15 and perhaps 20 other genes [(6);
K-S Chen, L. Potockd, J. R, Lupski, MRDD Res, Rev.
2, 122 (1996)]. MYD15 expression is easily datected
in the pituitary gland (data not shown). Haploinsuffi-
ciency for MYQ15 may explain a portion of the SMS

phenotype such as short stature. Moreover, a few
SMS patients have sensorineural hearing loss, pos-
sibly becausa of a point mutation in MYOT5 in trans
to the SMS 17p11.2 deletion.
R. A, Fridell, data not shown.
K. B. Avraham et al., Nature Genel. 11, 369 (1995);
X-Z. Liu ef al,, ibid. 17, 268 (1997); F. Gibson et af,,
Nature 374, 62 (1895); D. Wedl af al., ibid., p. 60.
37, RNA was from cochiea lab-
yrinths) obtained from human fetuses at 18 o 22
b ol A i ath auidel

g8

tin
established by the Human Research Committea at
the Brigham and Women's Hospital. Only samples
without evidence of degradation wera pocled for
poly (A)* selection over oligo{dT) columns. First-
strand cONA was prepared using an Advantage RT-
for-PCR kit (Clontech Laboratonies). A portion of the
first-strand cONA (4%) was amplified by PCR with
Advantage cONA polymarase mix (Clontech Labora-
tories) using human MYD15-specific obgonuclectide
primers (forward, 5 -GCATGACCTGCCGGCTAAT-
GGG-3'; reverse, 5'-CTCACGGCT TCTGCATGGT-
GCTCGGECTGGEE-3'). Cycling conditions were 40 5
at 94°C; 40 s at 667C (3 cycles), 60°C (5 cyclas), and
55°C (29 cycles); and 45 s at 68°C. PCR products.
were visualized by ethidium bromide staining after
fractionation in a 1% agarose gel. A 688-bp PCR

Continuity in Evolution: On the
Nature of Transitions

Walter Fontana and Peter Schuster

Todistinguish continuous from discontinuous evelutionary change, a relation of nearness
between phenotypes is needed. Such a relation is based on the probability of one
phenotype being accessible from another through changes in the genotype. This near-
ness relation is exemplified by calculating the shape neighborhood of a transfer RNA
secondary structure and provides a characterization of discontinuous shape transfor-
mations in ANA. The simulation of replicating and mutating RNA populations under
selection shows that sudden adaptive progress coincides mostly, but not always, with
discontinuous shape transformations. The nature of these transformations illuminates
the key role of neutral genetic drift in their realization.

A much-debated issue in evolutionary bi-
ology concerns the extent to which the
history of life has proceeded gradually or has
been puncruated by discontinuous transi-
tions at the level of phenortypes (1). Qur
goal is to make the notion of a discontinu-
ous transition more precise and to under-
stand how it arises in a model of evolution-
ary adaptation.

We focus on the narrow domain of RNA
secondary structure, which is currently the
simplest compurationally tractable, yet re-
alistic phenotype (2). This choice enables
the definition and exploration of concepts
that may prove useful in a wider context.
BNA secondary structures represent a
coarse level of analysis compared with the
three-dimensional structure at atomic reso-
lution. Yer, secondary structures are empir-

Ingtitut for Theoretische Chemie, Universitat Wien, Wihr-
Ingerstrassa 17, A-1090Wien, Austria, Santa Fe Institute,
1309 Hyde Park Road, Santa Fe, NM 87501, USA, and
International Institute for Applied Systems Analysis
(lASA), A-2361 Laxenburg, Austria,

ically well defined and obtain their biophys-
ical and biochemical importance from be-
ing a scaffold for the tertiary structure. For
the sake af brevity, we shall refer ro second-
ary structures as “shapes.” RNA combines
in a single molecule both genotype (repli-
catable sequence) and phenotype (select-
able shape), making it ideally suited for in
vitro evolution experiments (3, 4).

To generate evolutionary histories, we
used a stochastic continuous time model of
an RNA population replicating and mutar-
ing in a capacity-constrained flow reactor
under selection (5, 6). In the laboratory, a
goal might be to find an RNA aptamer
binding specifically to a molecule (4). Al-
though in the experiment the evolutionary
end product was unknown, we thought of
its shape as being specified implicitly by the
imposed selection criterion. Because our in-
tent is to study evolutionary histories rather
than end products, we defined a target
shape in advance and assumed the replica-
tion rate of a sequence to be a function of

8 REPORTS

product is expected from amplification of the human

MYO15 cDNA. Ampification of human genomic

DINA with this primer pair would result in a 2903-bp
t.
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the similarity between its shape and the
targer. An actual situation may involve
more than one best shape, but this does not
affect our conclusions.

An instance representing in its qualita-
tive features all the simulations we per-
formed is shown in Fig. 1A, Starting with
identical sequences folding into a random
shape, the simulation was stopped when the
population became dominated by the tar-
get, here a canonical tRNA shape. The
black curve traces the average distance to
the target (in\-'crscly related o fitness) in
the population against time. Aside from a
short initial phase, the entire history is
dominated by steps, thart is, flat periods of
no apparent adaptive progress, interrupted
by sudden approaches roward the target
structure (7). However, the dominant
shapes in the population not only change at
tht.'se murkud events I)lll undergu st'vcral
fitness-neutral transformations during the
periods of no apparent progress. Although
discontinuities in the fitness trace are evi-
dent, it is entirely unclear when and on the
basis of what the series of successive phe-
notypes itself can be called continuous or
discontinuous.

A set of entities is organized into a (to-
pological) space by assigning to each entity
a system of neighborhoods. In the present
case, there are two kinds of entities: se-
quences and shapes, which are relared by a
thermodynamic folding procedure. The set
of possible sequences (of fixed length) is
naturally organized into a space because
point mutations induce a canonical neigh-
borhood. The neighborhood of a sequence
consists of all its one-error mutants. The
problem is how to organize the set of pos-
sible shapes into a space. The issue arises
because, in contrast to sequences, there are
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Structure of
randomly chosen Phenylalanyl-tRNA as
initial sequence target structure
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Evolution of RNA molecules as a Markow process and its analysis by means of the relay series



Stock Solution —>

Q

Reaction Mixture ——

Replication rate constant
(Fitness):
=y / o+ Adg ¥]
Ads ¥ = dy(S,.S.)

Selection pressure:
The population size,
N = # RNA moleucles,

Is determined by the flux:

N(t)zﬁi\/ﬁ

Mutation rate:

p =0.001/ Nucleotide x Replication

The flow reactor as a device for
studying the evolution of molecules
in vitro and in silico.
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Neutral genotype evolution during phenotypic stasis
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Phenylalanyl-tRNA
as target structure




A start

N

N

joble) 0} souelSIg

&)
% ..m..”..”..”
N
AR
AUV
D\ SRR
(ATAIAN R
AR
(AUANSA LANARN RN SN NN
ACNANAR AR AN RN
ATANSONL RV IV VAR NOANSONY
ALV R AT RO
AAANANINARAL A IRANAN SO
R
AR
IO W0
AONONHARONANNAY N
SRS
AR (AN
R AN
OO NN 2
N
ALY
Wi
W

A sketch of optimization on neutral networks



7. Ursachen und Konsequenzen der Neutralitdt



Was bedeutet Neutralitdt ?

Selektive Neutralitat =
= mehrere Genotypen weisen identische Fitness auf.

Strukturelle Neutralitdt =
= mehrere Genotypen bilden identische Strukturen aus.



THE ORIGIN OF SPECIES

BY MEANS OF NATURAL SELECTION,

OR THEE

PRESERVATION OF FAVOURED RACES IN THE STRUGGLE
FOR LIFE,

By CHARLES DARWIN, M.A.,

FELLOW. OF THE ROV AL, OBOLOGICAL, LINXAAN, KT, BITTIES

AUTHOE OF £ JOURNAL OF RESEARCHES DURING W, M, ¥, REAOLE' YoYaos
ROUXD THE WoRLD,"

LONDOXN:
JOHN MURRAY, ALBEMARLE STREET.
1859,

Fr ripht of Tramalalion i rvsareal,



This preservation of favourable individual differences
and variations, and the destruction of those which are injurious,
I have called Natural Selection, or the Survival of the Fittest.
Variations neither useful nor injurious would not be affected by
natural selection, and would be left either a fluctuating element,
as perhaps we see in certain polymorphic species, or would
ultimately become fixed, owing to the nature of the organism
and the nature of the conditions.

Charles Darwin. The Origin of Species. Sixth edition. John Murray. London: 1872
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Fig. 3.1. Behavior of mutant genes following their appearance in a
finite population. Courses of change in the frequencies of mutants
destined to fixation are depicted by thick paths. N_ stands for the
effective population size and v is the mutation rate.
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The average time of replacement of a dominant genotype in a population
is the reciprocal mutation rate, 1/v, and therefore independent of

population size.

Fixation of mutants in neutral evolution (Motoo Kimura, 1955)
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RNA sequence:

Sequence, structure, and design

GUAUCGAAAUACGUAGCGUAUGGGGAUGCUGGACGGUCCCAUCGGUACUCCA

Iterative determination
of a sequence for the
given secondary
structure

Inverse folding of RNA:

Biotechnology,
design of biomolecules

Inverse Folding with predefined

Algorithm structures and functions
)
5
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)
o X
RNA structure e
of minimal free 2 5)
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Minimum free energy
criterion

UUUAGCCAGCGCGAGUCGUGCGGACGGGGUUAUCUCUGUCGGGCUAGGGCGC

Tst / GUGAGCGCGGGGCACAGUUUCUCAAGGAUGUAAGUUUUUGCCGUUUAUCUGG

2nd
3rd tria| ——————> UUAGCGAGAGAGGAGGCUUCUAGACCCAGCUCUCUGGGUCGUUGCUGAUGCG

4th
5th — CAUUGGUGCUAAUGAUAUUAGGGCUGUAUUCCUGUAUAGCGAUCAGUGUCCG
\—‘* GUAGGCCCUCUUGACAUAAGAUUUUUCCAAUGGUGGGAGAUGGCCAUUGCAG

Inverse folding

The inverse folding algorithm searches for sequences that form a given RNA
secondary structure under the minimum free energy criterion.
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STATIONARY MUTANT DISTRIBUTIONS AND
EVOLUTIONARY OPTIMIZATION

® PEeETER SCHUSTER and JORG SWETINA
Institut fiir theoretische Chemie
und Strahlenchemie der Universitit Wien,
Wiihringerstrafie 17,
A 1090 Wien,
Austria

Molecular evolution is modelled by erroneous replication of binary sequences. We show how the
selection of two species of equal or almost equal selective value is influenced by its nearest
neighbours in sequence space. In the case of perfect neutrality and sufficiently small error rates
we find that the Hamming distance between the species determines selection. As the error rate
increases the fitness parameters of neighbouring species become more and more important. In
the case of almost neutral sequences we observe a critical replication accuracy at which a drastic
change in the “quasispecies”, in the stationary mutant distribution occurs. Thus, in frequently
mutating populations fitness turns out to be an ensemble property rather than an attribute of the
individual.

In addition we investigate the time dependence of the mean excess production as a function of
initial conditions. Although it is optimized under most conditions, cases can be found which are
characterized by decrease or non-monotonous change in mean excess productions.

1. Introduction. Recent data from populations of RNA viruses provided
direct evidence for vast sequence heterogeneity (Domingo et al., 1987). The
origin of this diversity is not yet completely known. It may be caused by the low
replication accuracy of the polymerizing enzyme, commonly a virus specific,
RNA dependent RNA synthetase, or it may be the result of a high degree of
selective neutrality of polynucleotide sequences. Eventually, both factors
contribute to the heterogeneity observed. Indeed, mutations occur much more
frequently than previously assumed in microbiology. They are by no means
rare events and hence, neither the methods of conventional population genetics
(Ewens, 1979) nor the neutral theory (Kimura, 1983) can be applied to these
virus populations. Selectively neutral variants may be close with respect to
Hamming distance and then the commonly made assumption that the
mutation backflow from the mutants to the wilde type is negligible does not
apply.

A kinetic theory of polynucleotide evolution which was developed during the
past 15 years (Eigen, 1971; 1985; Eigen and Schuster, 1979; Eigen et al., 1987;
Schuster, 1986); Schuster and Sigmund, 1985) treats correct replication and
mutation as parallel reactions within one and the same reaction network

635
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Fitness values f(Iy)

01234567 8 9101112131415 1023
Sequences

A fitness landscape including neutrality
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....... ACAUGCGAA --:---
....... AUAUACGAA -------
....... ACAUGCGCA -------
....... GCAUACGAA -
....... ACAUGCURAA ------
....... ACAUGCGAG -
....... ACACGCGAA -------
....... ACGUACGAA --:---
....... ACAUAGGAA -
....... ACAUACGAA -

Consensus sequence of a quasispecies of two strongly coupled sequences of
Hamming distance d,,(X;,X;) = 1.
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------- ACAUGAUUCCCCGAA -+++++*
------- AUAUAAUACCUCGAA -+++++*
------- ACAUAAUUCCCCGCA «+++++
------- GCAUAAUUUCUCGAA +++++-
------- ACAUGAUUCCCCUAA «++++*
------- ACAUAAGUCCCCGAG +++++*
------- ACACGAUUCCCCGAA «++++*
------- ACGUAAUUCCUCGAA «++++*
------- ACAUGCUUCCUAGAA -++++*
------- ACAUAAUUCCCCGAA «++++*
------- AUAUAAUUCUCGGAA «+++++*
------- ACAAAAUGCCCCGUA -+++++

C

UCGAA .......

------- ACAU-AUUCC

Consensus sequence of a quasispecies of two strongly coupled sequences of
Hamming distance d,,(X;,X;) = 2.
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Neutral networks with increasing A: A =0.10, S = 229
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