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A+ X 52X X =D Shneior Lifson, 1914 - 2001

Here, suffice it to recognize that
adaptation of autocatalysts to their changing environ-
ment by incorporating sequels into the autocatalytic pro-
cess yields a great selective advantage.

A+ X —>2X; X—>D;D—>A <« recycling

Shneior Lifson and the origin of life



Figure 1. Consumption of nitrogenous fertilizers, 19501999, (Plotted
from data in refs 2 and 6).
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Alexis Madrigal. 2008. How to make fertilizer appear out of thin air. Vaclav Smil. 2002. Ambio 31:126-131
100 years Haber — Bosch process.

Every fifth nitrogen atom in our body has seen
a Haber-Bosch plant from inside at least once!

The importance of recycling in the modern world



1. History of molecular evolution and its applications
2. Why RNA is suitable for molecular evolution
3. Evolutionary dynamics of replication and mutation

4. Evolution and complexity



1. History of molecular evolution and its applications



Reviews G. F. Joyes

DOz 10.1002 2 mie 200700 369

Forty Years of In Vitro Evolution™*
Gerald F. Joyce*

Keywards: Dedicated b Ledie Omrel on the oecasion of
keix Bk Birdvday

Sol Spiegelman,
1914 - 1983

Evolution in the test tube:

G.F. Joyce, Angew.Chem.Int.Ed.
46 (2007), 6420-6436

E.q.zo w“lgew:mhr_nlg B o0 Wik VO H Wedag CombH B Ca KCak, Weinkain Angra: O, bt Bl 2oy, 46, Sgao— 458



The serial transfer technique
for in vitro evolution
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Reproduction of the original figure of the
serial transfer experiment with Q3 RNA

D.R.Mills, R,L,Peterson, S.Spiegelman,
An extracellular Darwinian experiment
with a self-duplicating nucleic acid
molecule. Proc.Natl.Acad.Sci.USA

58 (1967), 217-224
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Fig. 9. Scrial transfer experiment. Each o-25 ml standard reaction mixture
contained 40 xg of Qf replicase and **P-UTP. The first reaction (o transfer)
was initiated by the addition of o2 pg ts-1 (temperature-sensitive RNA)
and incubated at 35 °C for 20 min, whereupon 002 ml was drawn for
counting and o'02 ml was used to prime the second reaction (first transfer),
and so on. Aflter the first 13 reactions, the incubation periods were reduced
to 15 min (transfers 14-29). Transfers 30-38 were incubated for 1o min.
Transfers 39~-52 were incubated for 7 min, and transfers 53-74 were incu-
bated for 5 min., The arrows above certain transfers (o, 8, 14, 29, 37, 53, and
73) indicate where o'co1-0'1 ml of product was removed and used to prime re-
actions for sedimentution annlysis on sucrose. The insct examines both infec-
tious und total RNA. ‘T'he results show that biologically competent RNA ceases
to appear ufter the 4th transfer (Mills e# al. 1967).
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Charles Weissmann
1931-

RNA replication by QB-replicase

C. Weissmann, The making of a phage.
FEBS Letters 40 (1974), S10-S18
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Kinetics of RNA replication

C.K. Biebricher, M. Eigen, W.C. Gardiner, Jr.
Biochemistry 22:2544-2559, 1983
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Manfred Eigen
1927 -
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Mutation and (correct) replication as parallel chemical reactions

M. Eigen. 1971. Naturwissenschaften 58:465,
M. Eigen & P. Schuster.1977. Naturwissenschaften 64:541, 65:7 und 65:341
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The error threshold in replication and mutation
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Consequences of the error threshold



organism mutation rate | reproduction event

per genome
RNA virus 1 replication
retroviruses 0.1 replication

bacteria 0.003 replication
eukaryotes 0.003 cell division
eukaryotes 0.01-0.1 sexual reproduction

John W. Drake, Brian Charlesworth, Deborah Charlesworth and James F. Crow. 1998.
Rates of spontaneous mutation. Genetics 148:1667-1686.
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Selma Gago, Santiago F. Elena, Ricardo Flores, Rafael Sanjuan. 2009. Extremely high mutation rate
of a hammerhead viroid. Science 323:1308.

Mutation rate and genome size
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Preface

Antiviral strategy on the horizon

Emor catastrophs had its concepmal ongins m the middle of
the 200t canmry, when the consequences of mmrations an
enzymes imvolved in protein synthesiz, as 3 theory of agme.
In those times bielogical processes were s2nerally perceived
diferently from teday. Infectiouns diseases were regarded as
3 fleeting muisancs which would be eliminated through the
nse of antibiotics and antiviral agents. Microbial vanation,
althongh kpown in soone cases, was not thoughe to be a signif-
icant praflem for diseaze comrol. Variaton in differentiarad
arganisms was seen as resulting essentially from exchanges
of genetic marerial associsted with sexnsl reproduciion.
The problem was o umvetl the mechanisms of inhentance,
expression of genetic nformation and membolism. Few sawr
thar genetic change is ocouring at presant in 21 organisms,
and still fewer recegnized Darwinian principles as essential
w0 the biology of pathogenic vimnses and cells. Population
zensticists rarely used bacteria or vimses as experimental
systems o define conceprs in biological evolution. The extent
of gepetic polymorphizin smong individuals of the same
ological species came as a swprise when the first results
an camparison of electrophoretic mobility of enmymes were
abtained. With the advent of in vioo DIVA recombination,
and rapid mucleic acid sequencing technigues. molecular
analyses of genomes reinforced the conclusion of extreme
inter-indvidual genetic vanaton within the same specias.
Morar, due largely w0 spectacular progress in comparative
zenonucs, we see cellular DMAs, both prokaryetic and
enkaryanc, as highly dynamic Most cellular processes, in-
chuding such sszenrial mformation-bearing and wansfarring
events as genome replication, travscription snd wanslaton,
are increasingly perceived as mhersntly macourste. Vimsas,
and in particular B2A virises, are smong the most extremes
exzmples of exploitation of replication maccuracy for
survival.

Emror catastrophe, or the loss of meaningzful genetic infor-
mation through excess genetic vanation, was fommlated in
quantitative famms a3 & consequance of quasispecies theory,
which was first developed to explain self-crganization and
sdaptability of primutive replicons in early stages of life. Ra-
cantly, 3 concepiual extension of emor catasrophe that could
fze defined as “induced genetic detertoration” has emergad as

G16B-17028 — ses frone marser 48 2004 Elserzar BV, All mights resarvad.
doi-10. 10185 rirneres. 2004.11.001

a possible antiviral strategy. This is the topic of the current
special issue of Firus Researcll.

Few wonld nowadays doubt that one of the msjor obsta-
cles fior the control of viral disease is shon-termm adaptabiliny
of virzl pathogens. Adaptability of viruses follows the same
Darwintan principles that have shaped biological evolution
over aons, thar iz, repeated rounds of reproduction with g=-
netic vartation, competition and selection, offen perturbed
by random evenrs such as statstical fiucneations in popu-
lation size. However, with vimises the consequences of the
operation of these very same Darwinian principles are felt
within very shom times. Short-term evolution (within hours
and days) can be also obsarved with some cellular pathozens,
with susers of nonmal cells, and cancer cells. The nanme of
FINA viral patbogens begs for altemative antiviral sirategies,
and forcing the vinus to cross the critical error threshold for
maintenznce of genstic information is one of them

The contributiens to this vohune have besn chosen to
reflect different lines of evidence (both theoretical and
expenmental} on which antiviral designs based on genetc
deterioration inffictad upon viruses are bemng consmcted.
Theoretical smdies have explored the copyinz fdeline
conditions that must be fulfilled by any mformation-bearing
replication system for the essenrial geaefic information to
e wansmitted to progeny. Clesely related to the theoretical
developments have been numerous expermmental smdies
on quasispecies dynanucs and their mmltiple biclogical
manifastations. The lawer cam be summarized by sayinz
thar BINA wirusas, by virme of existing a: mwrant speca
rather than defined genetic entities, ramarkably expand their
poteniial to overcome selective pressures intended o limit
their replication. Indesd, the use of amtiviral mbibitors in
clinical practice and the desizn of vaccines for 2 mmber of
major BXA vinis-associztad diseases, are currently prestded
by a sensa of uncermainty. Another line of growing research is
the enzvmolegy of copying fidelity by viral replicases, aimed
at understanding the molecular basis of nutagenic actvities.
Ermror catastrophe as @ potential new antiviral swategy re-
ceived an important inpulse by the cbservation thar ribavirin
(a licensed sptiviral nuclesside analogue) may be exerting. in
somme systenns, its antiviral activity through enhanced mutage-

L1 Preafaoa 7 Virus Revearch 107 {20080 103018

nesis. This has encovraged imvestigations oo new mutigenic
base analogues, some of them usad m anticancer chemothar-
apy. Some chapters nuurmanze these important biochemical
smudies on cell entry pathways and metsbolism of mutagenic
agents, that may find new applications s antiviral agents.
This velume miands to be basically 2 progress report, an
inroduction to a new sverue of research, and a realistic ap-
pratzal of the mamy issues thar remain to be investizated. In
this respect, I can ewvisags (not witheut many uncemaintes)
at laast three lines of needad research: (i) One on further un-
derstandinz of quasispectss dynamics in infected individozls
to leam more on how to apply comnbinstions of vinis-specific
nmtagens and inhibitors in an effective way, finding synar-
zistic combinations and avoiding antagonistic ones s well
a5 savere clinjcal sides effects. (1) Another on a desper undar-
standing of the metabolism of mutagenic agents, in particular
basa and oucleoside svalogues. This includes identification
of the manspartars that carry them into cells, an understand-
inz of their metsbolic processing, inmacellular stabilicy and
alterations of nucleotide poals, among other tsswes. (iii) Sall
another line of needed ressarch is the development of new
mntagenic agants specific for vimses, showing no {or im-
ired) tongicity for cells. Some advances may come from links
with anticancer research, but others should result from the
desizns of new molecules, based oo the souchires of viral
polvmerases. [ really hope that the reader finds this issue not
only to e an interasting and wseful review of the current sim-

stion in the Seld. bat also 8 stinulating expesure to the major
problems to be faced.

The ides to prepara this special tssue came 25 3 Kind iovits-
tton of Ulrich Desselberger, former Editor of Firns Research,
and then taken enthmsiastically by Luis Enjuanes, recenthy ap-
pointed as Editor of Firss Research. [ take this oppormmity
to thank Ulrich, Luis and the Editor-in-Chief of Firns Re-
search, Brian Wahy, for their contimed mmterest and support
to the research on virns evelution over the vears.

My thanks go also to the 19 suthors who despits their busy
schadules bave taken time o prepare excellent mammscrips,
o Elsevier staff for their prompt responses 10 miy raguests,
and, last but not l2ast, to Ms. Lucia Homrillo from Centro de
Biologia Molecular “Severo Ochoa™ for her patient desling
with the comespondence with suthors and the final organiza-
tiom of the issne.

Estsban Domingas

Universidad durdnoma de Madrid

Canmp de Biologia Molecwlar “Savero Ochoa ™
Conzgjo Superior de Imestigaciones Clantjficas
Canteblmce and Faldesimas

Mudrid, Spain

Tel.: + 3401 207 B4E38/9; fax: +34 91 407 4720
E-mail address; edomimgodaicbm. wam es
Available onlime & December 2004
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Application of quasispecies theory to the fight against viruses



2. Why RNA is suitable for molecular evolution
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RNA sequence GUAUCGAAAUACGUAGCGUAUGGGGAUGCUGGACGGUCCCAUCGGUACUCCA
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RNA sequence GUAUCGAAAUACGUAGCGUAUGGGGAUGCUGGACGGUCCCAUCGGUACUCCA
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ViennaRNA Package.

Ivo L. Hofacker, Walter Fontana, Peter F. Stadler, Sebastian Bonhoeffer,

Manfred Tacker, and Peter Schuster.
Fast folding and comparison of RNA secondary structures.

Mh.Chem. 125:167-188, 1994

Ronny Lorenz, Stephan H. Bernhart, Christian HOner zu Siederissen,
Hakim Tafer, Christioh Flamm, Peter F. Stadler, and Ivo L. Hofacker.
ViennaRNA Package 2.0.

Algorithms Mol. Biol. 6:26, 2011
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Structural parameters affecting the kinetics of
RNA hairpin formation

J. H. A. Nagel, C. Flamm', 1. L. Hofacker', K. Franke?, M. H. de Smit,
P. Schuster® and C. W. A. Pleij*

Leiden Institute of Chemistry, Goraeus Laboratories, Leiden University, 2300 RA Leiden, The Netherlands,
'Institut fiir Theoretische Chemie und Molekulare Strukturbiologie, Universitat Wien, A-1090 Vienna, Austria
and 2IBA NAPS GmbH Rudolf-Wissell-Strasse 28 D-37079 Goéttingen, Germany

Received January 28, 2005; Revised and Accepted June 7, 2006

ABSTRACT

There is little experimental knowledge on the
sequence dependent rate of hairpin formation in
RNA. We have therefore designed RNA sequences
that can fold into either of two mutually exclusive
hairpins and have determined the ratio of folding
of the two conformations, using structure probing.
This folding ratio reflects their respective folding
rates. Changing one of the two loop sequences from
a purine- to a pyrimidine-rich loop did increase its
folding rate, which corresponds well with similar
observations in DNA hairpins. However, neither
changing one of the loops from a regular non-
GNRA tetra-loop into a stable GNRA tetra-loop, nor
increasing the loop size from 4 to 6 nt did affect the
folding rate. The folding kinetics of these RNAs have
also been simulated with the program ‘Kinfold'.
These simulations were in agreement with the
experimental results if the additional stabilization
energies for stable tetra-loops were not taken into
account. Despite the high stability of the stable
tetra-loops, they apparently do not affect folding
kinetics of these RNA hairpins. These results show
that it is possible to experimentally determine
relative folding rates of hairpins and to use these
data to improve the computer-assisted simulation
of the folding kinetics of stem-loop structures.
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Structural parameters affecting the kinetic competition of RNA
hairpin formation. Nucleic Acids Res. 34:3568-3576 (2006)
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3. Evolutionary dynamics of replication and mutation



Sewall Wright, 1889 - 1988

Fitness

Sewall Wright. 1932. The roles of mutation,
inbreeding, crossbreeding and selection in evolution.
In: D.F.Jones, ed. Int. Proceedings of the Sixth
International Congress on Genetics. Vol.1, 356-366.
Ithaca, NY.

Genotype Space

Sewall Wrights fitness landscape as metaphor for Darwinian evolution
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single peak landscape

Fitness values f(X})

Error class k

A model fitness landscape that was accessible to computation in the nineteen eighties
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Thomas Wiehe. 1997. Model dependency of error
thresholds: The role of fitness functions and
contrasts between the finite and infinite sites
models. Genet. Res. Camb. 69:127-136
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— Relative concentration y(p) —>

0.8 |

06 |

0 0.0005 0.001 0.0015

—— Mutation rate p —>

The linear fitness landscape shows no error threshold




Realistic fitness landscapes

1.Ruggedness: nearby lying genotypes may
develop into very different phenotypes

2.Neutrality: many different genotypes give rise to
phenotypes with identical selection behavior

3.Combinatorial explosion: the number of possible
genomes is prohibitive for systematic searches

Facit: Any successful and applicable theory of molecular evolution
must be able to predict evolutionary dynamics from a small or at
least in practice measurable number of fitness values.
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Two questions:

1. Why are quasispecies on some particular
fitness landscapes so stable?

2. What happens if the dominant sequences
are neutral with respect to selection?
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S N

D & 6 e '12-17\8 200412453 33X 34 .36 o 40) (48
| ¢ _

: . ”
65 (66 (68 ~ 72~ (80 .96 129 130, (132 (136 /144’ (160, (192 257\ 1258

N/
‘l

260 264 272 288 320. 384 513 514 516 520 528 544 576 640 768

Determination of the dominant mutation flow: d=1,s=919



THE NEUTRAL THEORY
OF MOLECULAR EVOLUTION

MOTOO KIMURA

National Institute of Genetics, Japan

Motoo Kimura, 1924 - 1994

Motoo Kimura's population genetics of
neutral evolution.

'3
imeed |||

Evolutionary rate at the molecular level. SM:'ZR[DGE UNIVERSITY PRESS
. “ambridge
Natu re 217 624-626! 1955 London New York New Rochelle

. Melbourne Sydney
The Neutral Theory of Molecular Evolution.

Cambridge University Press. Cambridge,
UK, 1983.
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Fig. 3.1. Behavior of mutant genes following their appearance in a
finite population. Courses of change in the frequencies of mutants
destined to fixation are depicted by thick paths. N, stands for the
effective population size and v is the mutation rate.
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Is the Kimura scenario correct for frequent mutations?
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------- ACAUGCGAA ------= master sequence 1
....... AUAUACGARA ===

....... ACAUGCGCA ----:--

....... gg%géggﬁ

....... ACAUGCGAG resrere H
....... ACACGCGAA -------

....... ACGUACGAA :veess

....... ACAUAGGARA ---ee-
....... ACAUACGAA ------- master sequence 2

....... ACAUgCGAA -ssese CONSENSUS Sequence

....... ACAGUCAGAA «+eeeee master sequence 1
------- ACAGUCCGAA ====-- intermediate |
....... AUAAUCCGARA ereres
....... ACAGUCAGCA «eeeese
....... GCAGUCAGAA «+-+-:-
....... ACAGUCAUAA =erere-
....... ACAGUCAGAG -resres
....... ACAACCCGARD -reses
Consensus sequences ofa e ACGGUCAGAA ------

quasispecies of two strongly A e ReAR intermediate I

coupled sequences of ~ wreeee ACAAUCCGAA === master sequence 2

Hamming distance
dH(Xi,,Xj) =land2. eeeee ACAiUCIéGAA ------- consensus sequence



4. Evolution and complexity



Fitness landscapes are becoming experimentally accessiblel

Protein landscapes: Yuuki Hayashi, Takuyo Aita, Hitoshi Toyota, Yuzuru Husimi,
Itaru Urabe, Tetsuya Yomo. 2006. Experimental rugged fitness landscape in protein
segeunce space. PLoS One 1:€96.

RNA landscapes: Sven Klussman, Ed. 2005. The aptamer handbook. Wiley-VCh,
Weinheim (Bergstralle), DE.

Jason N. Pitt, Adrian Ferré-D’Amaré. 2010. Rapid construction of empirical RNA
fitness landscapes. Science 330:376-379.

RNA viruses: Esteban Domingo, Colin R. Parrish, John J. Holland, Eds. 2007.
Origin and evolution of viruses. Second edition. Elesvier, San Diego, CA.

Retroviruses: Roger D. Kouyos, Gabriel E. Leventhal, Trevor Hinkley, Mojgan
Haddad, Jeannette M. Whitcomb, Christos J. Petropoulos, Sebastian Bonhoeffer.
2012. Exploring the complexity of the HIV-I fitness landscape. PLoS Genetics
8:e1002551



The new biology provides a hitherto unknown
challenge for mathematicians, computer scientists,
and theorical biologists for mainly two reasons

enormous amount of data and

complexity of structure and dynamics.



-+, T was taught in the pregenomic era to be a
hunter. I learnt how to identify the wild beasts
and how to go out, hunt them down and kill
them. We are now urged to be gatherers, to
collect everything lying around and put it into
storehouses.

Someday, it is assumed, someone will come and
sort through the storehouses, discard all the
junk, and keep the rare finds. The only
difficulty is how to recognize them. Sydney Brenner, 1927 -

Sydney Brenner. Hunters and gatherers. The Scientist 16(4): 14, 2002

The ,,big data“ problem in bioinformatics



Theory - mathematics and computation
- cannot remove complexity, but it
shows what kind of ..regular® behavior
can be expected and what experiments
have to be done to get a grasp on the
irregularities.

Manfred Eigen, 1927 -

Preface to E. Domingo,
C.R. Parrish, J.J.Holland, eds.
Origin and Evolution of
Viruses. Academic Press 2008

Theory, mathematics and complexity
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Thank you for your attention



Web-Page for further information:

http://www.tbi.univie.ac.at/~pks
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