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DYNAMICAL SYSTEMS UNDER

CONSTANT ORGANIZATION 1.
TOPOLOGICAL ANALYSIS OF A FAMILY

OF NON-LINEAR DIFFERENTIAL EQUATIONS
—A MODEL FOR CATALYTIC HYPERCYCLEST
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Mathematical Institute,
University of Vienna, Austria

The paper presents a qualitative analysis of the following systems of n differential equations:
L X =XX =X ) ray XX, (j=i—1+nd, and s=r—1+nd, ), which show cyclic symmetry.
These dynamical systems are of particular interest in the theory of selforganization and
biological evolution as well as for application to other fields.
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RNA or DNA replication dynamics is now fully resolved in
chemical kinetic terms but highly complicated and
Involving thousands of elementary steps.

Albert Einstein (?): ,, Things should be made as simple as possible
but not simpler!”



first order autocatalysis second order autocatalysis
template X; ... template, X; ... catalyst
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rich dynamics including oscillations.
_ _ _ multiple stationary states, and
simple, ,.linear” dynamics deterministic chaos

competition and selection competition and cooperation
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The catalytic hypercycle a model for cooperation

X1 + 2Xy
XQ -+ 2X3

X3 + 2Xy4
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special case: f1 = fo = ... = f,

central fixed point

X = (Il.il.‘g....,;l‘n) — (%% ..... %

Figure 1. Catalytic hypercycle (closed cycles Qrepresent self-instructed re-
plication, arrows—>pointing from one cycle 10 another correspond to the
catalytic terms x;x;, j=i—1+nd;;)
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qualitative analysis of hypercycle dynamics



n=3: eigenvalues A,;=(-1+i v3)/2
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n=4: eigenvalues A, ,= (i, -1, -i)
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n=5: eigenvalues A, = (£ 5 -1 FV(5:\5)/2))/4
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2. Hypercycles - 40 years later



v

N

A =B A

thermodynamic equilibrium

deterministic and stochastic chemical reaction A < B




P,(t) = P(XA(t) = -n.)
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stock solution [a] =ag —s reaction mixture [a],[x] ——>

flow rate r= TR‘1

autocatalysis in the flow reactor
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Table 1: Expectation values of random variables of the hypercycle with
ag = 200, »r = 0.5, fi = 0.01, and

n = 2 in the How reactor.

fa = 0.01.

Competition between the absorbing and the quasi-stationary state

Parameters:

x1(0) | 29(0) a T T
1 1 14431 284 28.5
2 2 61.2 69.4 69.4
3 3 17.3 91.6 91.4
4 4 3.9 98.1 98.2
5 5 1.2 99 .4 99.4
10 10 0.6 99.5 99.7

deterministic 0.50 | 99.75 [ 99.75
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3. How important is recycling?



668 P. Schuster and K. Sigmund: Dynamics of Evolutionary Optimization

Dynamics of Evolutionary Optimization
Peter Schuster and Karl Sigmund

Institut fiir Theoretische Chemie und Strahlenchemie und Institut fiir Mathematik der Universitit Wien,
WaihringerstraBe 17, A-1090 Wien, Austria

Biophysical Chemistry | Chemical Kinetics | Flow Reactor | Methods and Systems | Non-equilibrium Phenomena |
Non-linear Phenomena | Optimization | Polynucleotide Replication | Selection

General criteria of selection are derived from the kinetic equations of polynucleotide replication. As an illustrative example we discuss
replication in the continuously stirred tank reactor (CSTR). The total rate of RNA synthesis is optimized during selection. The conjecture
that the rate of approach towards the stable steady state is a maximum can be easily disproved. It is possible, nevertheless, to derive a
potential function for polynucleotide replication in the CSTR. Following a method first introduced by Shahshahani we define a non
Euclidean metric on the space of polynucleotide concentrations. In this space with a Riemannian metric the systems follows the corre-
sponding generalized gradient during the process of selection and, therefore, the rate of ascent is now maximum. Potential functions can
be derived also for some second order autocatalytic systems which are of interest in evolution, for a multidimensional Schloegl model in
the CSTR and, as orginally has been shown by Shahshahani, for the Fisher-Haldane-Wright equation of population genetics. In the
general case, however, second order autocatalysis is not compatible with the existence of a potential. The elementary hypercycle is
discussed as one simple example of a reaction network whose dynamics cannot be described by means of a generalized gradient system.
Finite population size introduces a stochastic element into the selection process. Under certain conditions fluctuations in particle numbers
become extremely important for the dynamics of selection. Two examples of this kind are: kinetic degeneracy of rate constants and low
accuracy of replication.

Replicator equations in different environments
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On the Crucial Stages in the Origin of Animate Matter

Shneior Lifson

Chemical Physics Department. Weizmann Institute of Science. Rehovot 76100, Israel

Received: 29 March 1996 / Accepted: 30 May 1996
Key words:  Origin — Animate matter — Autocataly-

sis — Natural selection — Sequels — Complexity —
Metabolism — Cellular organization — Genetic code

A+ X 52X X =D Shneior Lifson, 1914 - 2001

Here, suffice it to recognize that
adaptation of autocatalysts to their changing environ-
ment by incorporating sequels into the autocatalytic pro-
cess yields a great selective advantage.

A+ X —>2X; X—>D;D—>A <« recycling

Shneior Lifson and recycling in origin of life models
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4. RNA replication without protein enzymes



Self-Sustained Replication
of an RNA Enzyme

Tracey A. Lincoln and Gerald F. Joyce*

An RNA enzyme that catalyzes the RNA-templated joining of RNA was converted to a format whereby
two enzymes catalyze each other's synthesis from a total of four oligonucleotide substrates. These
cross-replicating RNA enzymes undergo self-sustained exponential amplification in the absence of
proteins or other biological materals. Amplification occurs with a doubling time of about 1 hour and
can be continued indefinitely. Populations of various cross-replicating enzymes were constructed
and allowed to compete for a common pool of substrates, during which recombinant replicators arose
and grew to dominate the population. These replicating RNA enzymes can serve as an experimental
model of a genetic system. Many such model systems could be constructed, allowing different
selective outcomes to be related to the underlying properties of the genetic system.

Science 2009, 323:1229 - 1232



An example of two ribozymes growing exponentially by cross-catalysis.
T.A. Lincoln, G.F. Joyce. 2009. Self-sustained replication of an RNA enzyme. Science 323:1229-1232
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An example of two ribozymes growing exponentially by cross-catalysis.

* N

T.A. Lincoln, G.F. Joyce. 2009. Self-sustained replication of an RNA enzyme. Science 323:1229-1232
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Fig. 1. Cross-replicating RNA enzymes. (A) The enzyme E' (gray) catalyzes
ligation of substrates A and B (black) to form the enzyme E, whereas E
catalyzes ligation of A" and B' to form E'. The two enzymes dissodate to provide
copies that can catalyze another reaction. (B) Sequence and secondary
structure of the complex formed between the enzyme and its two substrates (E',
A, and B are shown; E, A, and B' are the reciprocal). The curved ammow indicates

the site of ligation. Solid boxes indicate critical wobble pairs that provide
enhanced catalytic activity. Dashed boxes indicate paired regions and catalyfic
nucleotides that were altered to construct various cross replicators. (C) Var-
iable portion of 12 different E enzymes. The corresponding E' enzymes have a
complementary sequence in the paired region and the same sequence of
catalytic nucleotides (alterations relative to the E1 enzyme are highlighted).
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dei:10.1038/naturel1549

Spontaneous network formation among
cooperative RNA replicators

Nilesh i-raidya]. Michael L. Ma.napatz, Irene A. Ghz:n'a’[, Ramon }{u.lvi—Brum:t'}. Eric J. IIH}'dEl‘Ld & Niles Lehman'

The origins of life on Earth required the establishment of self-replicating chemical systems capable of maintaining and
evolving biological information. In an RNA world, single self-replicating RNAs would have faced the extreme challenge of
possessing a mut ation rate low enough both to sustain their own information and to compete successfully against molecular
parasites with limited evolvability. Thus theoretical analyses suggest that networks of interacting molecules were more
likely to develop and sustain life- like behaviour. Here we show that mixtures of RNA fragments that self- assemble into
self-replicating ribozymes spontaneously form cooperative catalytic cycles and networks. We find that a specific
three- membered network has highly cooperative growth dynamics. When such cooperative networks are competed
directly against selfish autocatalytic cycles, the former grow faster, indicating an intrinsic ability of RNA populations to
evolve greater complexity through cooperation. We can observe the evolvability of networks through in vitro selection.
Our experiments highlight the advantages of cooperative behaviour even at the molecular stages of nascent life.

Nature 2012, 491:72 - 77
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Figure 1 | Cooperative covalent assembly of recombinase ribozymes.

a, Design of recombinase ribozymes capable of spontaneous cooperative
covalent assembly from fragments. The Azoarcus ribozyme™ can be broken at
three loop regions to obtain four oligomers capable of self-assembling into a
full-length molecule®*. The grey box in W (magenta) is the internal guide
sequence (IGS), whereas those at the 3' ends of the W, X (lime) and Y (blue)
fragments are recombination targets (tags) recognized by the IGS, which guides
the catalysis of a covalent closure (#) of the loops. b, A cooperative system
comprised of three subsystems, each created from partitioning the molecule
into two pieces at different junctions: [, (W + heX+Y+Z), [,

(WsX + BY+Z) and [; (WeX+Y + h+Z). Numbers over arrows estimate the
cooperative advantage for each step (see text). ¢, Electrophoretic observation of
assemblies of E; aru:l Es The 5’ fragments of I; or I were independently 5'-
radiolabelled with **P (that is, *I, or *1,). The reactions were performed by
incubating 0.5 pM (for autocatalysis) or 0.05pM (for direct assembly, cross
catalysis and cooperation) of each fragment for 8 h. Where appropriate, the
arrows identify the subsystems being assembled by the previous subsystems in
the network, where the IG5 and recombination tags match. d, Yields of
individual E; ibozymes over time, measured every 30 min for 16h when all six
[; RNA fragments are co-incubated at 0,05 pM.



5. Thoughts on major transitions



How Does Gomplexity Arise in Evolution

Nature’s recipe for mastering scarcity, abundance, and unpredictability

PETER SCHUSTER

Scarcity drives optimization in Darwin's sense

Abundance is required for innovation
and major transitions

Complexity 1996, 2(1):22 - 30
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Proof and evolutionary analysis of
ancient genome duplication in the
yeast Saccharomyces cerevisiae

Manolis Kellis, Bruce W. Birren' & Eric S. Lander'~

" The Broad Institute, Massachusetts Institute of Technology and Harvard University, Cambridge, Massachusetts 02138, USA
*MIT Computer Science and Artificial Intelligence Laboratory, and “Whitehead Institute for Biomedical Research, Cambridge, Massachusetts 02139, USA

Whole-genome duplication followed by massive gene loss and specialization has long been postulated as a powerful mechanism
of evolutionary innovation. Recently, ithas become possible to test this notion by searching complete genome sequence for signs
of ancient duplication. Here, we show that the yeast Saccharomyces cerevisiae arose from ancient whole-genome duplication,
by sequencing and analysing Kluyveromyces waltii, a related yeast species that diverged before the duplication. The two
genomes are related by a 1:2 mapping, with each region of K. walfii corresponding to two regions of 5. cerevisiae, as expected for
whole-genome duplication. This resolves the long-standing controversy on the ancestry of the yeast genome, and makes it
possible to study the fate of duplicated genes directly. Strikingly, 95% of cases of accelerated evolution involve only one member of
a gene pair, providing strong support for a specific model of evolution, and allowing us to distinguish ancestral and derived
functions.

A model for the genome duplication in yeast 100 million years ago

Manolis Kellis, Bruce W. Birren, and Eric S. Lander. Proof and evolutionary analysis of ancient genome
duplication in the yeast Saccharomyces cerevisiae. Nature 428: 617-624, 2004
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Figure 1 Model of WGD followed by massive gene loss predicts gene interleaving in sister
regions. a, After divergence from K waltii the Saccharomyces lineage underwent a
genome duplication event, creating two copies of every gene and chromosome. b, The
vast majority of duplicated genes underwent mutation and gene loss. ¢, Sister segments
retained different subsets of the original gene set, keeping two copies for only a small
minority of duplicated genes, which were retained for functional purposes. d, Within

S. cerevisiae, the only evidence comes from the conserved order of duplicated genes
(numbered 3 and 13) across different chromosomal segments; the intervening genes are
unrelated. e, Comparison with K. waltii reveals the duplicated nature of the 5 cerevisiae
genome, interleaving genes from sister segments on the basis of the ancestral gene
order.
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