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.Die Zeit, die ist ein sonderbar Ding.
Wenn man so hinlebt, ist sie rein gar nichts.
Aber dann auf einmal, da spiirt man nichts als sie.

Sie ist um uns herum, sie ist auch in uns drinnen. ..."
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1. 6Gradualismus und Punktualismus



Charles Darwin, 1809 - 1882
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Die fiinf Konzepte von Darwin's Evolutionstheorie aus der
.Origin of Species”, 23.11.1859

Ernst Mayr. 1991. One long argument. Harvard University Press:

1. die Tatsache der Evolution - evolution as such

2. alle Organismen stammen von einem gemeinsamen
Vorfahren ab - common descent

3. die Entstehung neuer Arten aus den vorhandenen -
multiplication of species

4. alle Verdnderungen geschehen in (sehr) kleinen
Schritten - gradualism

5. die Anpassung an die Umgebung durch die Tatsache,
das nur wenige Individuen in der Konkurrenz um die
begrenzten Ressourcen bestehen - natural selection
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Stephen J. Gould, _
1941 - 2002 Niles Eldredge, 1943 -
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The concept of punctuated equilibrium



Gradualism versus punctualism in butterfly species formation
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Elisabeth Vrba, 1943 -

A speciation model based on
punctuated equilibrium
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The Effect Hypothesis

A phylogenetic tree is skewed in the dirdction
of species with higher rates of speciation and
extinciion. [Adapied fram South Afmcan

Journal of Science 76, 61 (F980}]




2. Langzeitevolutionsexperimente
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Bacterial evolution under controlled conditions: A twenty years experiment.

Richard Lenski, University of Michigan, East Lansing



lawn of E.coli

24 h 24 h
2y . >

nutrient: minimal glucose
in citrate buffer

medium supports = 5 x 10° bacteria

U

1 day 6.67 generations
1 month = 200 generations
1 year = 2400 generations

Serial transfer of bacterial
cultures in Petri dishes

Bacterial evolution under controlled conditions: A twenty years experiment.

Richard Lenski, University of Michigan, East Lansing



The twelve populations of Richard Lenski‘s long time evolution experiment
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Variation of genotypes in a bacterial serial transfer experiment

D. Papadopoulos, D. Schneider, J. Meier-Eiss, W. Arber, R. E. Lenski, M. Blot. Genomic evolution during a
10,000-generation experiment with bacteria. Proc.Natl.Acad.Sci.USA 96 (1999), 3807-3812
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Fig. 1. Change in average cell size (1 fl = 107 '° L)
in a population of E. coli during 3000 generations
of experimental evolution. Each point is the mean
of 10 replicate assays (22). Error bars indicate
95% confidence intervals. The solid line shows the
best fit of a step-function model to these data
(Table 1).

Epochal evolution of bacteria in serial transfer experiments under constant conditions

S. F. Elena, V. S. Cooper, R. E. Lenski. Punctuated evolution caused by selection of rare beneficial mutants.
Science 272 (1996), 1802-1804
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Fig. 1. Change in average cell size (1 fl = 107 '° L)
in a population of E. coli during 3000 generations
of experimental evolution. Each point is the mean
of 10 replicate assays (22). Error bars indicate
95% confidence intervals. The solid line shows the
best fit of a step-function model to these data
(Table 1).
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Fig. 2. Correlation between average cell size and
mean fitness, each measured at 100-generation
intervals for 2000 generations. Fitness is ex-
pressed relative to the ancestral genotype and
was obtained from competition experiments be-
tween derived and ancestral cells (6, 7). The open
symbols indicate the only two samples assigned
to different steps by the cell size and fitness data.

Epochal evolution of bacteria in serial transfer experiments under constant conditions

S. F. Elena, V. S. Cooper, R. E. Lenski. Punctuated evolution caused by selection of rare beneficial mutants.

Science 272 (1996), 1802-1804
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Phylogeny in E. coli evolution
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The twelve populations of Richard Lenski‘s long time evolution experiment
Enhanced turbidity in population A-3
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Fig. 1. Population expansion during evolution of the Cit* phenotype.
Samples frozen at various times in the history of population Ara-3 were
revived, and three DM25 cultures were established for each generation.
Optical density (OD) at 420 nm was measured for each culture at 24 h. Error
bars show the range of three values measured for each generation.

Innovation by mutation in long time evolution of Escherichia coli in constant environment

Z.D. Blount, C.Z. Borland, R.E. Lenski. 2008. Proc.Natl.Acad.Sci.USA 105:7899-7906




Innovation by mutation in long
time evolution of Escherichia
coli in constant environment

Z.D. Blount, C.Z. Borland, R.E.
Lenski. 2008.
Proc.Natl.Acad.Sci.USA
105:7899-7906
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Fig.2. Growth of Cit~ (blue triangles) and Cit™ (red diamonds) cells in DM25
medium. Each trajectory shows the average OD for eight replicate mixtures of
three clones, all from generation 33,000 of population Ara-3.
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Fig.3. Alternative hypotheses for the origin of the Cit* function. According
to the rare-mutation hypothesis, the probability of mutation from Cit ™ to Cit~
was low but constant over time. Under the historical-contingency hypothesis,
the probability of this transition increased when a mutation arose that pro-
duced a genetic background with a higher mutation rate to Cit*.




Table 1. Summary of replay experiments

First experiment

Second experiment

Third experiment

Independent Independent Independent
Generation  Replicates Cit™ mutants Replicates Cit" mutants Replicates  Cit™ mutants
Ancestor 6 0 10 0 200 0
5,000 — — - - 200 0
10,000 6 0 30 0 200 0
15,000 — — — o 200 0
20,000 6 0 30 0 200 2
25,000 6 0 30 0 200 0
27,000 — — — — 200 2
27,500 6 0 30 0 — -
28,000 — — — — 200 0
29,000 6 0 30 0 200 0
30,000 6 0 30 0 200 0
30,500 6 1 30 0 — —
31,000 6 0 30 0 200 1
31,500 6 1 30 0 200 1
32,000 6 0 30 4 200 2
32,500 6 2 30 1 200 0
Totals 72 4 340 5 2,800 8

Contingency of E. coli evolution experiments




3. Neutralitdt und ihre Konsequenzen



What is neutrality ?

Selective neutrality =
= several genotypes having the same fitness.

Structural neutrality =
= several genotypes forming molecules with
the same structure.
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This preservation of favourable individual differences
and variations, and the destruction of those which are injurious,
I have called Natural Selection, or the Survival of the Fittest.
Variations neither useful nor injurious would not be affected by
natural selection, and would be left either a fluctuating element,
as perhaps we see in certain polymorphic species, or would
ultimately become fixed, owing to the nature of the organism
and the nature of the conditions.

Charles Darwin. The Origin of Species. Sixth edition. John Murray. London: 1872



.A mathematician is a blind man in a dark room
looking for a black cat which isn't there."

Charles Darwin



WIOTED KIMLES

Motoo Kimura's population genetics of
neutral evolution.

Evolutionary rate at the molecular level.
Nature 217: 624-626, 1955.

The Neutral Theory of Molecular Evolution.

Cambridge University Press. Cambridge,
UK, 1983.

THE NEUTRAL THEORY
OF MOLECULAR EVOLUTION

MOTOO KIMURA

National Institute of Genetics, Japan

CAMBRIDGE UNIVERSITY PRESS
Cambridge

London New York New Rochelle
Melbourne Sydney



Fig. 3.1. Behavior of mutant genes following their appearance in a
finite population. Courses of change in the frequencies of mutants
destined to fixation are depicted by thick paths. N_ stands for the
effective population size and v is the mutation rate.

4N

e

1/v

—

Frequency

0 aal e S M i

M

The average time of replacement of a dominant genotype in a population
is the reciprocal mutation rate, 1/v, and therefore independent of

population size.

Fixation of mutants in neutral evolution (Motoo Kimura, 1955)



Fig. 4.2. Percentage amino acid differences when the o hemoglobin
chains are compared among eight vertebrates together with their
phylogenetic relationship and the times of divergence.
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5-End 3-End
Sequence GCGGAUUUAGCUCAGDDGGGAGAGCMCCAGACUGAAYAUCUGGAGMUCCUGUGTPCGAUCCACAGAAUUCGCACCA N = 4n
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Secondary structure

Symbolic notation 5-End ((((((---((((------- M)-(((((------- 1)) S L R M)-MN)):---- 3-End Ng < 3"

Criterion: Minimum free energy (mfe)

Rules: _(_)_ e {AU,CG,GC,GUUA,UG)

A symbolic notation of RNA secondary structure that is equivalent to the conventional graphs
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Structure space
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Sequence space

one phenotype

—

many genotypes



GGCUAUCGUACGUUUACCCAAAAGUCUACGUUGGACCCAGGCAUUGGACG

One error neighborhood — Surrounding of an RNA molecule of
chain length n=50 in sequence and shape space



GGCUAUCGUACGUUUACCCGAAAGUCUACGUUGGACCCAGGCAUUGGACG

GGCUAUCGUACGUUUACCCAAAAGUCUACGUUGGACCCAGGCAUUGGACG

One error neighborhood — Surrounding of an RNA molecule of
chain length n=50 in sequence and shape space



GGCUAUCGUACGUUUACCCGAAAGUCUACGUUGGACCCAGGCAUUGGACG

GGCUAUCGUACGUUUACCCAAAAGUCUACGUUGGACCCAGGCAUUGGACG

One error neighborhood — Surrounding of an RNA molecule of
chain length n=50 in sequence and shape space



: Q;\\
G
GGCUAUCGUACGUUUACCCAAAAGUCUACGUUGGUCCCAGGCAUUGGACG GGCUAUCGUACGUUUACCCGAAAGUCUACGUUGGACCCAGGCAUUGGACG

GGCUAUCGUACGUUUACCCAAAAGUCUACGUUGGACCCAGGCAUUGGACG

GGCUAUCGUACGUUUACCCAAAAGUCUACGUUGGACCCAGGCACUGGACG

One error neighborhood — Surrounding of an RNA molecule of
chain length n=50 in sequence and shape space



GGCUAUCGUAUGUUUACCCAAAAGUCUACGUUGGACCCAGGCAUUGGACG
GGCUAUCGUACGUUUACCCAAAAGUCUACGUUGGACCCAGGCAUUAGACG
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GGCUAGCGUACGUUUACCCAAAAGUCUACGUUGGACCCAGGCAUUGGACG
GGCUAUCGUACGUUUACCCGAAAGUCUACGUUGGACCCAGGCAUUGGACG
GGCUAUCGUACGUUUACCCAAAAGCCUACGUUGGACCCAGGCAUUGGACG

One error neighborhood — Surrounding of an RNA molecule of
chain length n=50 in sequence and shape space



Number Mean Value Variance

Degree of Neutrality: 50125 0.334167 0.006961

Number of Structures: 1000 52.31 85.30
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Shadow — Surrounding of an RNA structure in shape space:
AUGC alphabet, chain length n=50
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Mutation and (correct) replication as parallel chemical reactions

M. Eigen. 1971. Naturwissenschaften 58:465,
M. Eigen & P. Schuster.1977. Naturwissenschaften 64:541, 65:7 und 65:341
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dt
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Decomposition of matrix W

Wy Wy ... Wip
wa1 Waoz ... Wap

w= | 7T = Q- F with
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Qu Qi ... Qu, fi 0 ... 0
Qa1 Qn ... @y 0 f» ... 0
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(-'-v.)nl C‘?nQ e (-'_n,)-nn 0 0 s .f:rr.

Factorization of the value matrix W separates mutation and fitness effects.
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Fig. 3.1. Behavior of mutant genes following their appearance in a
finite population. Courses of change in the frequencies of mutants
destined to fixation are depicted by thick paths. N, stands for the

effective population size and v is the mutation rate.
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Is the Kimura scenario correct for frequent mutations?



d,=1
lim, ,x(p)=x,(p)=0.5

Iimp—>0 Xy (p) =1-a

Iimp—)O x,(p)=a
¥

d, =3
lim,_, x (p)=1,1im,_,x,(p)=0 or
Iimp—>0 xl (p):O’ Iimp—)O X2 (p):l

Pairs of neutral sequences in replication networks Random fixation in the
sense of Motoo Kimura
P. Schuster, J. Swetina. 1988. Bull. Math. Biol. 50:635-650



Fitness values f(Iy)

01234567 8 9101112131415 1023
Sequences

A fitness landscape including neutrality
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....... ACAUGCGAA --:---
....... AUAUACGAA -------
....... ACAUGCGCA -------
....... GCAUACGAA -
....... ACAUGCURAA ------
....... ACAUGCGAG -
....... ACACGCGAA -------
....... ACGUACGAA --:---
....... ACAUAGGAA -
....... ACAUACGAA -

Consensus sequence of a quasispecies of two strongly coupled sequences of
Hamming distance d,,(X;,X;) = 1.
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------- ACAUGAUUCCCCGAA -+++++*
------- AUAUAAUACCUCGAA -+++++*
------- ACAUAAUUCCCCGCA «+++++
------- GCAUAAUUUCUCGAA +++++-
------- ACAUGAUUCCCCUAA «++++*
------- ACAUAAGUCCCCGAG +++++*
------- ACACGAUUCCCCGAA «++++*
------- ACGUAAUUCCUCGAA «++++*
------- ACAUGCUUCCUAGAA -++++*
------- ACAUAAUUCCCCGAA «++++*
------- AUAUAAUUCUCGGAA «+++++*
------- ACAAAAUGCCCCGUA -+++++

C

UCGAA .......

------- ACAU-AUUCC

Consensus sequence of a quasispecies of two strongly coupled sequences of
Hamming distance d,,(X;,X;) = 2.
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Neutral networks with increasing A: A =0.10, S = 229



4. In silico-Evolution von RNA-Strukturen



Evolution of RNA molecules as a Markow process and its analysis by means of the relay series
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Evolution of RNA molecules as a Markow process and its analysis by means of the relay series



Evolution of RNA molecules as a Markow process and its analysis by means of the relay series



/X1 /X12
X4 >X7 >X7
X1 4)(3 %( X8

Xo /"’Xo \“"Xo \“"‘Xo /:Xo

X2 Xe wa
X, ~ Xe
X5 i:xg

Xs

Evolution of RNA molecules as a Markow process and its analysis by means of the relay series
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Evolution of RNA molecules as a Markow process and its analysis by means of the relay series



/X1 /X12
X»] >X7 >X7 %(
X1 4)(3 %( X8 4

XO /;'XO \>X0 \“’;XO />X0 R X711 AXM

“ Xg—X
X \>Xg -
Xs?

Xz
5

Evolution of RNA molecules as a Markow process and its analysis by means of the relay series
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Computer simulation of RNA optimization
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A model of an objective function based on polynucleotide folding is used to investigate the dy-
namics of evolutionary adaptation in finite populations. Binary sequences are optimized with
respect to their kinetic properties through a stochastic process involving mutation and selection.
The objective fi i ists in a from the set of all binary strings with given length into
a set of two-dimensional structures. These structures then encode the kinetic properties, expressed
in terms of parameters of reaction probability distributions, The objective function obtained there-
by represents a realistic example of a highly “rugged land * E bles of molecular strings
adapting to this landscape are studied by tracing their escape path from local optima and by apply-
ing multivariate analysis. Effects of small population numbers in the tail of the sequence distribu-
tion are discussed quantitatively. Close upper bounds to the number of distinct values produced by
our objective function are given. The distribution of values is explored by means of simulated an-
nealing and reveals a random scatter in the locations of optima in the space of all sequences. The
genetic optimization protocol is applied to the “traveling salesman” problem.
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A computer model of evolutionary optimization
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Molecular evolution is newe@ as a typical bi ial izati bl ‘We analyse a chemical reaction model which
RNA replication including correct copying and point mu:amn.s los:thgr with hydrolytic d,cgradauon and the dilution flux
of a flow reactor. The corresponding stochastic reaction network is iona T in order to tigate some basic
features of evnluunnxry oF i d Ch isti l‘e.'num of real molecular systems are mimicked by folding binary
into di ional structures, values are derived from these molecular ‘phenotypes’ by an
evaluation procedure whnch ass:sns numeru:zl values to diffs of the dary structure, The fitness function obtained
thereby i 1g-rang; i which are typical for real sysrems Thc rmess Lmd.scapc also reveals qulle

involved and b:za.rte local topologies which we ider also ive of poly ion in actually
systems, Optimi P on an of and natral selection. The strategy observed in the

simulation experiments is fairly general and resembles clasdy a heuristic widely applied in operations research areas. Despite the
relative smallness of the system — we study 2000 molecules of chain length » =70 in a typical sn-nutauon experiment — features

lypl:.zl Eqr the evolution af reaI populations are observed as there are error thresholds for
The relative importance of selectively neutral or almost neutral variants is discussed
ies, entropy of the distribution, ensemble correlation, mean Hamming distance

quasis| Y
,.Fcu.r" isti ble p

and diversity of the population, are P a.ndcheckedfarlhul itivity in ling major opti

simulation.

1. Molecular evolution and optimization

Conventional population genetics treats muta-
tion as an external stochastic source. Moreover,
mutations are considered as very rare events. In
the absence of genetic recombination populations
of haploid organisms are expected to be usually
homogeneous. Experimental evidence on viral and
bacterial populations is available now and it con-
tradicts these expectations. Mutations appear
much more frequently than was originally as-
sumed.

Dedicated to Professor Manfred Eigen on the occasion of his
60th birthday.

Correspondence add P. Sch . Institut fiir th isch
Chemie und Strahl ie der Universitit Wien, Withrin-
gerstraBe 17, A-1090 Wien, Austria.

v steps and

events during the

The molecular approach considers error-free
replication and mutation as parallel reactions
within the same mechanism. Detailed information
on the molecular mechanisms of polynucleotide
replication provides direct insight into the nature
of mutations and their role in evolution. Several
classes of mutations are properly distinguished:
point mutations, deletions and insertions. Point
mutations are of special importance: they repre-
sent the most frequent mutations and are easily
incorporated into theoretical models of molecular
evolution. This does not mean, however, that the
other classes of mutations are not important in
evolution. To give an example: there is a general
belief that insertions leading to gene duplication
played a major role in the development of present
day enzyme families.

The first theoretical model of molecular evolu-

0301-4622 /87 /503.50 © 1987 Elsevier Science Publishers B.V. (Biomedical Division)
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Evolution in silico

W. Fontana, P. Schuster,
Science 280 (1998), 1451-1455

random individuals. The primer pair used for ganomic
DNA - amplification  1s 5 -TCTCCCTGGATTCT-
CATTTA-3' (forward) and 5'-TCTTTGTCTTCTGT-
TCCACC-3 (reverse). Reactions were performed in
25 l using 1 uret of Tag DNA polymerass with each
primer at 0.4 uM; 200 uM each dATP, dTTP, dGTP,
and dCTP; and PCR butfer [10 mM tris-HCI (pH 8.3),
50 mM KCL,.1.5 mM MgCL] in a cycle condition of
84°C for 1 min and then 35 cycles of 84°C for 30 s,
55°C for 30 5, and 72°C for 30 s followed by 72°C for
B min. PCR products were purified (Qiagen), digested
with Xmn |, and separated in a 2% agarose gel.

32 Ammmlﬂm&yaﬁmmwmn\rw
result in degradation of the transcript [L. Maguat,
Am. J, Hum, Genet. 59, 279 (1996)].

33, Data not shown; a dot blot with poly (A} RNA from
50 human tissues (The Human ANA Master Biot,
7770-1, Clontech Laboratories) was hybridized with
a proba from exons 29 1o 47 of MYD15 using the
same congition as Northemn biot analysis (13).

34, Smith-Magenis syndrome (SMS) is due 1o deletions
of 17p11.2 of various sizes, the smallest of whict
includes MYO15 and perhaps 20 other genes [(6);
K-S Chen, L. Potockd, J. R, Lupski, MRDD Res, Rev.
2, 122 (1996)]. MYD15 expression is easily datected
in the pituitary gland (data not shown). Haploinsuffi-
ciency for MYQ15 may explain a portion of the SMS

phenotype such as short stature. Moreover, a few
SMS patients have sensorineural hearing loss, pos-
sibly becausa of a point mutation in MYOT5 in trans
to the SMS 17p11.2 deletion.
R. A, Fridell, data not shown.
K. B. Avraham et al., Nature Genel. 11, 369 (1995);
X-Z. Liu ef al,, ibid. 17, 268 (1997); F. Gibson et af,,
Nature 374, 62 (1895); D. Wedl af al., ibid., p. 60.
37, RNA was from cochiea lab-
yrinths) obtained from human fetuses at 18 o 22
b ol A i ath auidel

g8

tin
established by the Human Research Committea at
the Brigham and Women's Hospital. Only samples
without evidence of degradation wera pocled for
poly (A)* selection over oligo{dT) columns. First-
strand cONA was prepared using an Advantage RT-
for-PCR kit (Clontech Laboratonies). A portion of the
first-strand cONA (4%) was amplified by PCR with
Advantage cONA polymarase mix (Clontech Labora-
tories) using human MYD15-specific obgonuclectide
primers (forward, 5 -GCATGACCTGCCGGCTAAT-
GGG-3'; reverse, 5'-CTCACGGCT TCTGCATGGT-
GCTCGGECTGGEE-3'). Cycling conditions were 40 5
at 94°C; 40 s at 667C (3 cycles), 60°C (5 cyclas), and
55°C (29 cycles); and 45 s at 68°C. PCR products.
were visualized by ethidium bromide staining after
fractionation in a 1% agarose gel. A 688-bp PCR

Continuity in Evolution: On the
Nature of Transitions

Walter Fontana and Peter Schuster

Todistinguish continuous from discontinuous evelutionary change, a relation of nearness
between phenotypes is needed. Such a relation is based on the probability of one
phenotype being accessible from another through changes in the genotype. This near-
ness relation is exemplified by calculating the shape neighborhood of a transfer RNA
secondary structure and provides a characterization of discontinuous shape transfor-
mations in ANA. The simulation of replicating and mutating RNA populations under
selection shows that sudden adaptive progress coincides mostly, but not always, with
discontinuous shape transformations. The nature of these transformations illuminates
the key role of neutral genetic drift in their realization.

A much-debated issue in evolutionary bi-
ology concerns the extent to which the
history of life has proceeded gradually or has
been puncruated by discontinuous transi-
tions at the level of phenortypes (1). Qur
goal is to make the notion of a discontinu-
ous transition more precise and to under-
stand how it arises in a model of evolution-
ary adaptation.

We focus on the narrow domain of RNA
secondary structure, which is currently the
simplest compurationally tractable, yet re-
alistic phenotype (2). This choice enables
the definition and exploration of concepts
that may prove useful in a wider context.
BNA secondary structures represent a
coarse level of analysis compared with the
three-dimensional structure at atomic reso-
lution. Yer, secondary structures are empir-

Ingtitut for Theoretische Chemie, Universitat Wien, Wihr-
Ingerstrassa 17, A-1090Wien, Austria, Santa Fe Institute,
1309 Hyde Park Road, Santa Fe, NM 87501, USA, and
International Institute for Applied Systems Analysis
(lASA), A-2361 Laxenburg, Austria,

ically well defined and obtain their biophys-
ical and biochemical importance from be-
ing a scaffold for the tertiary structure. For
the sake af brevity, we shall refer ro second-
ary structures as “shapes.” RNA combines
in a single molecule both genotype (repli-
catable sequence) and phenotype (select-
able shape), making it ideally suited for in
vitro evolution experiments (3, 4).

To generate evolutionary histories, we
used a stochastic continuous time model of
an RNA population replicating and mutar-
ing in a capacity-constrained flow reactor
under selection (5, 6). In the laboratory, a
goal might be to find an RNA aptamer
binding specifically to a molecule (4). Al-
though in the experiment the evolutionary
end product was unknown, we thought of
its shape as being specified implicitly by the
imposed selection criterion. Because our in-
tent is to study evolutionary histories rather
than end products, we defined a target
shape in advance and assumed the replica-
tion rate of a sequence to be a function of

8 REPORTS

product is expected from amplification of the human

MYO15 cDNA. Ampification of human genomic

DINA with this primer pair would result in a 2903-bp
t.
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the similarity between its shape and the
targer. An actual situation may involve
more than one best shape, but this does not
affect our conclusions.

An instance representing in its qualita-
tive features all the simulations we per-
formed is shown in Fig. 1A, Starting with
identical sequences folding into a random
shape, the simulation was stopped when the
population became dominated by the tar-
get, here a canonical tRNA shape. The
black curve traces the average distance to
the target (in\-'crscly related o fitness) in
the population against time. Aside from a
short initial phase, the entire history is
dominated by steps, thart is, flat periods of
no apparent adaptive progress, interrupted
by sudden approaches roward the target
structure (7). However, the dominant
shapes in the population not only change at
tht.'se murkud events I)lll undergu st'vcral
fitness-neutral transformations during the
periods of no apparent progress. Although
discontinuities in the fitness trace are evi-
dent, it is entirely unclear when and on the
basis of what the series of successive phe-
notypes itself can be called continuous or
discontinuous.

A set of entities is organized into a (to-
pological) space by assigning to each entity
a system of neighborhoods. In the present
case, there are two kinds of entities: se-
quences and shapes, which are relared by a
thermodynamic folding procedure. The set
of possible sequences (of fixed length) is
naturally organized into a space because
point mutations induce a canonical neigh-
borhood. The neighborhood of a sequence
consists of all its one-error mutants. The
problem is how to organize the set of pos-
sible shapes into a space. The issue arises
because, in contrast to sequences, there are

www.sciencemag.org * SCIENCE = VOL. 280 = 19 MAY 19958 1451



Structure of
randomly chosen Phenylalanyl-tRNA as
initial sequence target structure




Stock Solution —>

Q

Reaction Mixture ——

Replication rate constant
(Fitness):
=y / o+ Adg ¥]
Ads = dy(S,.S.)

Selection pressure:
The population size,
N =# RNA moleucles,

Is determined by the flux:

N@)~N £JN

Mutation rate:

p =0.001/ Nucleotide x Replication

The flow reactor as a device for
studying the evolution of molecules
In vitro and in silico.
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First adaptive phase in RNA structure optimization
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Transition inducing point mutations leave the
change the molecular structure molecular structure unchanged

First adaptive phase in RNA structure optimization: RNA sequences
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Neutral genotype evolution during phenotypic stasis
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Spreading and evolution of a population on a neutral network: t =150



Spreading and evolution of a population on a neutral network: t =150



Spreading and evolution of a population on a neutral network : t=170



Spreading and evolution of a population on a neutral network : t =200
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Spreading and evolution of a population on a neutral network : t =350
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Spreading and evolution of a population on a neutral network : t =500
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Spreading and evolution of a population on a neutral network : t =650
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Spreading and evolution of a population on a neutral network : t =820
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Spreading and evolution of a population on a neutral network : t =825
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Spreading and evolution of a population on a neutral network : t =830



Spreading and evolution of a population on a neutral network : t =835



Spreading and evolution of a population on a neutral network : t =840



Spreading and evolution of a population on a neutral network : t =845



Spreading and evolution of a population on a neutral network : t =850



Spreading and evolution of a population on a neutral network : t =855
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A sketch of optimization on neutral networks
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