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1. Darwinsche Evolution



Selection and

Genetic drift in

Genetic drift in

Generation time adaptation small populations | large populations
10 000 generations | 10°generations 107 generations

RNA molecules 10 sec 27.8h=1.16d 115.7d 3.17a

1 min 6.94 d 1.90 a 19.01 a
Bacteria 20 min 138.9d 38.03 a 380 a

10 h 11.40 a 1140 a 11 408 a
Multicelluar organisms 10d 274 a 27 380 a 273 800 a

20 a 20 000 a 2x 10" a 2% 10%a

Time scales of evolutionary change




Three necessary conditions for Darwinian evolution are:

1. Multiplication,
2. Variation, and

3. Selection.

Variation through mutation and recombination operates on the genotype
whereas the phenotype is the target of selection.

One important property of the Darwinian scenario is that variations in the
form of mutations or recombination events occur uncorrelated with their
effects on the selection process.

All conditions can be fulfilled not only by cellular organisms but also by
nucleic acid molecules in suitable cell-free experimental assays.



Bacterial Evolution

S. F. Elena, V. S. Cooper, R. E. Lenski. Punctuated evolution caused by selection of
rare beneficial mutants. Science 272 (1996), 1802-1804

D. Papadopoulos, D. Schneider, J. Meier-Eiss, W. Arber, R. E. Lenski, M. Blot.
Genomic evolution during a 10,000-generation experiment with bacteria.
Proc.Natl.Acad.Sci.USA 96 (1999), 3807-3812
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lday » 6.67 generations
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Serial transfer of Escherichia coli
cultures in Petri dishes
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Fig. 1. Change in average cell size (1 fl = 107 '° L)
in a population of E. coli during 3000 generations
of experimental evolution. Each point is the mean
of 10 replicate assays (22). Error bars indicate
95% confidence intervals. The solid line shows the
best fit of a step-function model to these data
(Table 1).
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Fig. 2. Correlation between average cell size and
mean fitness, each measured at 100-generation
intervals for 2000 generations. Fitness is ex-
pressed relative to the ancestral genotype and
was obtained from competition experiments be-
tween derived and ancestral cells (6, 7). The open
symbols indicate the only two samples assigned
to different steps by the cell size and fitness data.

Epochal evolution of bacteria in serial transfer experiments under constant conditions

S. F. Elena, V. S. Cooper, R. E. Lenski. Punctuated evolution caused by selection of rare beneficial mutants.

Science 272 (1996), 1802-1804
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Variation of genotypes in a bacterial serial transfer experiment

D. Papadopoulos, D. Schneider, J. Meier-Eiss, W. Arber, R. E. Lenski, M. Blot. Genomic evolution during a
10,000-generation experiment with bacteria. Proc.Natl.Acad.Sci.USA 96 (1999), 3807-3812



D. Papadopoulos et al. Genomic evolution during a
10000-generation experiment with bacteria.
Proc.Natl.Acad.Sci.USA 96:3807-3812, 1999
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2. Evolutionsexperimente mit Molekilen



Evolution of RNA molecules based on Q3 phage
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Stock solution: QB RNA-replicase, ATP, CTP, GTP and UTP, buffer

Anwendung der seriellen Uberimpfungstechnik auf RNA-Evolution in Reagenzglas
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Reaction Mixture ——

Stock Solution —>

activated monomers, ATP, CTP, GTP,

UTP (TTP);
a replicase, an enzyme that performs

complemantary replication;

Stock solution:
buffer solution

mm... I_ i _L.
MRS | S A

studies of evolution in vitro and

The flowreactor is a device for
Iin silico.



Evolutionary design of RNA molecules

D.B.Bartel, J.W.Szostak, In vitro selection of RNA molecules that bind specific ligands.
Nature 346 (1990), 818-822

C.Tuerk, L.Gold, SELEX - Systematic evolution of ligands by exponential enrichment: RNA
ligands to bacteriophage T4 DNA polymerase. Science 249 (1990), 505-510

D.P.Bartel, J.W.Szostak, Isolation of new ribozymes from a large pool of random sequences.
Science 261 (1993), 1411-1418

R.D.Jenison, S.C.Gill, A.Pardi, B.Poliski, High-resolution molecular discrimination by RNA.
Science 263 (1994), 1425-1429

Y. Wang, R.R.Rando, Specific binding of aminoglycoside antibiotics to RNA. Chemistry &
Biology 2 (1995), 281-290

Jiang, A. K. Suri, R. Fiala, D. J. Patel, Saccharide-RNA recognition in an aminoglycoside
antibiotic-RNA aptamer complex. Chemistry & Biology 4 (1997), 35-50



/{;

Amplification
Diversification

Selection cycle

Selection —

\\— Desired Propeties

2R

No
An example of ‘“artificial selection’
with RNA molecules or ‘breeding’ of oy
biomolecules




chromatographic
column

The SELEX technique for the evolutionary preparation of aptamers
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L. Jiang, A. K. Suri, R. Fiala, D. J. Patel, Saccharide-RNA recognition in an aminoglycoside antibiotic-
RNA aptamer complex. Chemistry & Biology 4:35-50 (1997)



The three-dimensional structure of the
tobramycin aptamer complex

L. Jiang, A. K. Suri, R. Fiala, D. J. Patel,
Chemistry & Biology 4:35-50 (1997)
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3. Replikation, Mutation und Fitnesslandschaften
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.Replication fork' in DNA replication

The mechanism of DNA replication is ,semi-conservative®



Plus strand ey =—y—yy—————————- - === e == ——@
AUGGUACAUCAUGA cuu
Template induced synthesis
Plus strand sy=—r—pp—p—————————- == =~ — @
AUGGUACAUCAUGA CUUG
, UACC AU
Minus strand @-t=—te—te—t——— G
Template induced synthesis
Pl I T —————————— e —r——10
. AUBEUACAUCAUGA CUUG

UACCAUGUAGUACU

Minus strand @+
Complex dissociation lT

GAAC

Plus strand  =re——pr—p—p—f——r—rr
AUGGUACAUCAUGA
+

, UACCAUGUAGUACWU
Minus strand @ t——tm——t—te—t e

'I'I'I'l.
CUUG

GAAC

Complementary replication is
the simplest copying mechanism
of RNA.

Complementarity is determined
by Watson-Crick base pairs:

G=C and A=U
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point mutation
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Variation of genotypes through mutation
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dxl.

dt

=>" £0,%—-x, @ with ®=)" fx,

and 3 x, =1

0, =01- p)! D) pnGeE0 .y error rate per digit

d,(X;,X,)...Hamming distance between X, and X,

211 QU‘ =1

The replication-mutation equation



Mutation-selection equation: [I,] =x;20, >0, 0,20

dtl:Zi=1ijjixj_xi¢’ i=12,--,n; Z—ll L ¢= Z_lfjxj—f

Solutions are obtained after integrating factor transformation by means
of an eigenvalue problem

() gzk Ck( )'exp(/lkt)

Z _12 Ejk 'Ck(o)' exp(/ikt);

i=12,--,n; ¢, (0)= Z;hki x,(0)

W+{fl.Ql.j; i,j=1,2,---,n}; {ZU, i, j=1,2,- }; L_1:H={hij; i, j=1,2,---,n

L*W-L = A = {4;k=0,1,--n—-1}
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Master sequence

Formation of a quasispecies

in sequence space
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Master sequence

Formation of a quasispecies

in sequence space
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Master sequence
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Formation of a quasispecies

in sequence space



Uniform distribution in

sequence space
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SELF-REPLICATION WITH ERRORS

9

A MODEL FOR POLYNUCLEOTIDE REPLICATION ==

Jorg SWETINA and Peter SCHUSTER *

der Lineversinit,

17, A 1090 Wiew, Auriria

Tnarivas fiir Theoretische Chemie s

Received dth Jung 1982
Revised masssscript received Ted August 1962
Accepted J0us Asgust 1582

Koy womads: Palymisciosticde replivanion; Chasi - ipevies; Povst mutition: Mutunr clan: Stochastic replication

A model For polynucleotide replication is presented and analyzed by means of pertusbation theory. Twn hasis ssumptions
aliorw handling of sequences up 10 a chain length of » = 80 explicitly: poim mutatioss ase restricied so @ two-sdig model asd
individual sequences are subsumed into stant clawics. Pervarbation theory is in evcellent agreement with the evact revults for

long encugh sequences (# = 20

L. Introduction

Eigen [8] proposed a formal kinctic equation
{eq. 1) which describes self-replication under the
constraint of constant total population size:
"I‘.:'-a,-);.,r.,-%a..-u....»' n
By x, we denote the population number or con-
centration of the self-replicating element 1, ie.
x,=[1,]. The total population size or wal con-
centration ¢ = E,x, is kept constant by proper ad-
Jjustment of the constraint ¢: ¢ = EF w, x,. Char-
acteristically, this constraint has been called “con-
stant organization”, The relative values of diagonal

* Dedicated to the lize Professor BLL Jones who was among
the first 80 & rigerous mathematical snabysis om the prob.
fems described here.

*s Thes paper b considered as part 11 of Model Studies on
RMA eeplication. Past 1 i by Gassner and Schuster | 14]
* AN summations tsroughout this papee run from | 10 % unles.
specified duffermcly: £ =7, and L, . =B/ +EL .0
respectively.

00014627, /82 /T000-000,/ 50275 © 1982 [evier Becmsedical Pres

(w;, ) and off-disgonal (w, . { = () rates, as we shall
see in detail in section 2, arc related to the accu-
racy of the replication process, The specific prop-
erties of eq. | anc essentially basad on the fact that
it leads to exponential growth in the absence of
constriints (¢ = 0) and competitors (n = 1}.

The non-linear differential equation. eg. 1 - the

Finearity is i by the defi of'e

at constant ion - shows a
feature: it beads to selection of a defined ensemble
of self-replicating elements above a certain acca-
racy threshold. This ensemble of a master and its
mast frequent mutants is a so-called *quasi-species”
[9]. Below this threshold, however, no selection
takes place and the frequencies of the individual
elements are determined exclusively by their statis-
tical weights.

Rigorous mathematical analysis has been per-
formed on eq. | [7,15,24,26]. In particular, it was
shown that the non-lincarity of eq. 1 can be re-
maoved by an appropriate transformation. The -
genvalue problem of the linear differential equa-
tion obtained thereby may be solved approxi-
mately by the conventional perturbation technigue

1.0

Quasispecies > /< Uniform distribution ——

=l(25)

/ El(2) E(26)
// El2a) El(2)
), ¥ o8]
—Z1(21) = (29)

{20, =](30)

e q —s

0.00 0.05 0.10
—— Errorrate p=1-g——

Quasispecies as a function of the error rate p



Chain length and error threshold

O-c = (1-p)c 21 = n-In(l-p)=-Inc
Ino
n..constant: p... = —
n
Inc
p ... constant: n. = ——
P
O=(@1-p)" ... replication accuracy
p ... errorrate
n ... chainlength
Jon

superiority of master sequence
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Chain length: n=100 = m=1.6x 10%
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Mutant class

0
Binary sequences can be encoded
by their decimal equivalents:
2
C=0 and G =1, for example,
3 "0" =00000=CCCCC,
"14" = 01110 = CGGGC,
4 "29" = 11101 = GGGCGQG, etc.
5

Every point in sequence space is equivalent

Sequence space of binary sequences with chain length n =5
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4. Evolution /n silico



5'-end

O—CH, ¢ Ny

5-end GCGGAUUUAGCUCAGUUGGGAGAGCGCCAGACUGAAGAUCUGGAGGUCCUGUGUUCGAUCCACAGAAUUCGCACCA 3-end
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Evolution in silico

W. Fontana, P. Schuster,
Science 280 (1998), 1451-1455

random individuals. The primer pair used for ganomic
DNA - amplification  1s 5 -TCTCCCTGGATTCT-
CATTTA-3' (forward) and 5'-TCTTTGTCTTCTGT-
TCCACC-3 (reverse). Reactions were performed in
25 l using 1 uret of Tag DNA polymerass with each
primer at 0.4 uM; 200 uM each dATP, dTTP, dGTP,
and dCTP; and PCR butfer [10 mM tris-HCI (pH 8.3),
50 mM KCL,.1.5 mM MgCL] in a cycle condition of
84°C for 1 min and then 35 cycles of 84°C for 30 s,
55°C for 30 5, and 72°C for 30 s followed by 72°C for
B min. PCR products were purified (Qiagen), digested
with Xmn |, and separated in a 2% agarose gel.

32 Ammmlﬂm&yaﬁmmwmn\rw
result in degradation of the transcript [L. Maguat,
Am. J, Hum, Genet. 59, 279 (1996)].

33, Data not shown; a dot blot with poly (A} RNA from
50 human tissues (The Human ANA Master Biot,
7770-1, Clontech Laboratories) was hybridized with
a proba from exons 29 1o 47 of MYD15 using the
same congition as Northemn biot analysis (13).

34, Smith-Magenis syndrome (SMS) is due 1o deletions
of 17p11.2 of various sizes, the smallest of whict
includes MYO15 and perhaps 20 other genes [(6);
K-S Chen, L. Potockd, J. R, Lupski, MRDD Res, Rev.
2, 122 (1996)]. MYD15 expression is easily datected
in the pituitary gland (data not shown). Haploinsuffi-
ciency for MYQ15 may explain a portion of the SMS

phenotype such as short stature. Moreover, a few
SMS patients have sensorineural hearing loss, pos-
sibly becausa of a point mutation in MYOT5 in trans
to the SMS 17p11.2 deletion.
R. A, Fridell, data not shown.
K. B. Avraham et al., Nature Genel. 11, 369 (1995);
X-Z. Liu ef al,, ibid. 17, 268 (1997); F. Gibson et af,,
Nature 374, 62 (1895); D. Wedl af al., ibid., p. 60.
37, RNA was from cochiea lab-
yrinths) obtained from human fetuses at 18 o 22
b ol A i ath auidel
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tin
established by the Human Research Committea at
the Brigham and Women's Hospital. Only samples
without evidence of degradation wera pocled for
poly (A)* selection over oligo{dT) columns. First-
strand cONA was prepared using an Advantage RT-
for-PCR kit (Clontech Laboratonies). A portion of the
first-strand cONA (4%) was amplified by PCR with
Advantage cONA polymarase mix (Clontech Labora-
tories) using human MYD15-specific obgonuclectide
primers (forward, 5 -GCATGACCTGCCGGCTAAT-
GGG-3'; reverse, 5'-CTCACGGCT TCTGCATGGT-
GCTCGGECTGGEE-3'). Cycling conditions were 40 5
at 94°C; 40 s at 667C (3 cycles), 60°C (5 cyclas), and
55°C (29 cycles); and 45 s at 68°C. PCR products.
were visualized by ethidium bromide staining after
fractionation in a 1% agarose gel. A 688-bp PCR

Continuity in Evolution: On the
Nature of Transitions

Walter Fontana and Peter Schuster

Todistinguish continuous from discontinuous evelutionary change, a relation of nearness
between phenotypes is needed. Such a relation is based on the probability of one
phenotype being accessible from another through changes in the genotype. This near-
ness relation is exemplified by calculating the shape neighborhood of a transfer RNA
secondary structure and provides a characterization of discontinuous shape transfor-
mations in ANA. The simulation of replicating and mutating RNA populations under
selection shows that sudden adaptive progress coincides mostly, but not always, with
discontinuous shape transformations. The nature of these transformations illuminates
the key role of neutral genetic drift in their realization.

A much-debated issue in evolutionary bi-
ology concerns the extent to which the
history of life has proceeded gradually or has
been puncruated by discontinuous transi-
tions at the level of phenortypes (1). Qur
goal is to make the notion of a discontinu-
ous transition more precise and to under-
stand how it arises in a model of evolution-
ary adaptation.

We focus on the narrow domain of RNA
secondary structure, which is currently the
simplest compurationally tractable, yet re-
alistic phenotype (2). This choice enables
the definition and exploration of concepts
that may prove useful in a wider context.
BNA secondary structures represent a
coarse level of analysis compared with the
three-dimensional structure at atomic reso-
lution. Yer, secondary structures are empir-

Ingtitut for Theoretische Chemie, Universitat Wien, Wihr-
Ingerstrassa 17, A-1090Wien, Austria, Santa Fe Institute,
1309 Hyde Park Road, Santa Fe, NM 87501, USA, and
International Institute for Applied Systems Analysis
(lASA), A-2361 Laxenburg, Austria,

ically well defined and obtain their biophys-
ical and biochemical importance from be-
ing a scaffold for the tertiary structure. For
the sake af brevity, we shall refer ro second-
ary structures as “shapes.” RNA combines
in a single molecule both genotype (repli-
catable sequence) and phenotype (select-
able shape), making it ideally suited for in
vitro evolution experiments (3, 4).

To generate evolutionary histories, we
used a stochastic continuous time model of
an RNA population replicating and mutar-
ing in a capacity-constrained flow reactor
under selection (5, 6). In the laboratory, a
goal might be to find an RNA aptamer
binding specifically to a molecule (4). Al-
though in the experiment the evolutionary
end product was unknown, we thought of
its shape as being specified implicitly by the
imposed selection criterion. Because our in-
tent is to study evolutionary histories rather
than end products, we defined a target
shape in advance and assumed the replica-
tion rate of a sequence to be a function of

8 REPORTS

product is expected from amplification of the human

MYO15 cDNA. Ampification of human genomic

DINA with this primer pair would result in a 2903-bp
t.
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the similarity between its shape and the
targer. An actual situation may involve
more than one best shape, but this does not
affect our conclusions.

An instance representing in its qualita-
tive features all the simulations we per-
formed is shown in Fig. 1A, Starting with
identical sequences folding into a random
shape, the simulation was stopped when the
population became dominated by the tar-
get, here a canonical tRNA shape. The
black curve traces the average distance to
the target (in\-'crscly related o fitness) in
the population against time. Aside from a
short initial phase, the entire history is
dominated by steps, thart is, flat periods of
no apparent adaptive progress, interrupted
by sudden approaches roward the target
structure (7). However, the dominant
shapes in the population not only change at
tht.'se murkud events I)lll undergu st'vcral
fitness-neutral transformations during the
periods of no apparent progress. Although
discontinuities in the fitness trace are evi-
dent, it is entirely unclear when and on the
basis of what the series of successive phe-
notypes itself can be called continuous or
discontinuous.

A set of entities is organized into a (to-
pological) space by assigning to each entity
a system of neighborhoods. In the present
case, there are two kinds of entities: se-
quences and shapes, which are relared by a
thermodynamic folding procedure. The set
of possible sequences (of fixed length) is
naturally organized into a space because
point mutations induce a canonical neigh-
borhood. The neighborhood of a sequence
consists of all its one-error mutants. The
problem is how to organize the set of pos-
sible shapes into a space. The issue arises
because, in contrast to sequences, there are
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From sequences to shapes and back: a case study in
RNA secondary structures
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SUMMARY

RNA folding is viewed here as a map assigning secondary structures to sequences. At fixed chain length
the number of sequences far exceeds the number of structures. Frequencies of structures are highly non-
uniform and follow a generalized form of Zipf's law: we find relatively few common and many rare ones.
By using an algorithm for inverse folding, we show that sequences sharing the same structure are
distributed randomly over sequence space. All common structures can be accessed from an arbitrary
sequence by a number of mutations much smaller than the chain length. The sequence space is percolated
by extensive neutral networks connecting nearest neighbours folding into identical structures. Implications
for evolutionary adaptation and for applied molecular evolution are evident: finding a particular
strueture by mutation and selection is much simpler than expected and, even if catalytic activity should
turn out to be sparse in the space of RNA structures, it can hardly be missed by evolutionary processes.

1. INTRODUCTION

Folding sequences into structures is a central problem
in biopolymer research. Both robustness and accessi-
bility of structures, as functions of mutational change
in the underlying sequence, are crucial to both natural
and applied molecular evolution. Test-tube evolution
experiments are based on properties of RNA molecules:
as sequences they are genotypes, and as spatial
structures they are phenotypes (Spiegelman 1971;
Bicbricher 1983). Our concern is the mapping from
RNA sequences into structures being the simplest, and
the only tractable, example of a genotype-phenotype
mapping.

An RNA sequence is a point in the space of all 4"
sequences with fixed length #. This space has a natural
metric induced by point mutations interconverting
sequences known as the Hamming distance (Hamming
1950, 1986). The folding process considered here maps
an RNA sequence into a secondary structure (figure
1a) minimizing free energy. A secondary structure is
tantamount to a list of Watson—Crick type and GU
base pairs, and can be represented as a tree graph
(figure 14). This emphasizes the combinatorial nature
of secondary structures and allows for a canonical
distance measure between structures (Tai 1979).
Assuming elementary edit operations with pre-defined
costs, such as deletion, insertion and relabelling of
nodes, the distance between two trees is given by the
smallest sum of the edit costs along any path that
converts one tree into the other (Sankoff & Kruskal
1983).

Proc. R. Soc. Lond. B (1994) 255, 279-284
Printed in Great Britain

An approximate upper bound on the number of
minimum free-energy structures (of fixed chain length
2} can be obtained along the lines devised by Stein &
Waterman (1978). Counting only those planar sec-
ondary structures that contain hairpin loops of size
three or more (steric constraint), and that contain no
isolated base pairs (stacks of two or more pairs are
essentially the only stabilizing elements), one finds:

8§, = 1.4848 x n (1.8488)",

which is consistently smaller than the number of
sequences.

Folding can thus be viewed as a map between two
metric spaces of combinatorial complexity, a sequence
space and a shape space. (The notion of shape space
was originally used in theoretical immunology in a
similar context by Perelson & Oster (1979).) ‘Shape”
refers to a discretized (and hence coarse-grained)
structure representation, such as the secondary struc-
tures or the tree graphs used here. The notion of
secondary structure is but one among a spectrum of
possible levels of resolution that can be used to define
shape. It discards atomic coordinates, as well as the
relative spatial orientation of the structural elements,
taking into account only their number, size and relative
connectedness. Nevertheless, secondary structure is a
major component of whatever turns out to be an
adequate shape definition for RNA: it covers the
dominant part of the three-dimensional folding en-
ergies, very often it can be used successfully in the
interpretation of function and reactivity, and it is
frequently conserved in evolution (Sankoff ef al. 1978;

© 1994 The Royal Society
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Figure 4. Neutral paths. A neutral path is defined by a series
of nearest neighbour sequences that fold into identical
structures. Two classes of nearest neighbours are admitted:
neighbours of Hamming distance 1, which are obtained by
single base exchanges in unpaired stretches of the structure,
and neighbours ol Hamming distance 2, resulting from base
pair exchanges in stacks. Two probability densities of
Hamming distances are shown that were obtained by
searching for neutral paths in sequence space: (1) an upper
bound for the closest approach of trial and target sequences
{open circles}) obtained as endpoints of neutral paths
approaching the target from a random trial sequence (185
targets and 100 trials for each were used); (ii} a lower bound
for the closest approach of trial and rarget sequences (open
diamonds) derived from secondary structure statistics
(Fontana et al. 19934; sec this paper, §4); and (ii1) longest
distances between the reference and the endpoints of
monaotonously diverging neutral paths (filled circles) {500
reference sequences were used).




5. Neutrale Evolution
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Spreading and evolution of a population on a neutral network: t =150



Spreading and evolution of a population on a neutral network : t=170



Spreading and evolution of a population on a neutral network : t =200
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Spreading and evolution of a population on a neutral network : t =350
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Spreading and evolution of a population on a neutral network : t =500
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Spreading and evolution of a population on a neutral network : t =650
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Spreading and evolution of a population on a neutral network : t =820
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Spreading and evolution of a population on a neutral network : t =825
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Spreading and evolution of a population on a neutral network : t =830



Spreading and evolution of a population on a neutral network : t =835



Spreading and evolution of a population on a neutral network : t =840



Spreading and evolution of a population on a neutral network : t =845



Spreading and evolution of a population on a neutral network : t =850



Spreading and evolution of a population on a neutral network : t =855
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A sketch of optimization on neutral networks



6. Multistabilitat und RNA-Schalter



Structure Sy

Neutral Network Gy

Compatible Set Cy

Gkg Ck

The compatible set C, of a structure S, consists of all sequences which form S,
as its minimum free energy structure (the neutral network G, ) or one of its
suboptimal structures.



Structure S,

Structure S;

Intersection of two compatible sets: -

The intersection of two compatible sets is always non empty: C, N C, ¢ J
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Random graph theory is used to model and analyse the relationships between sequences and
secondary structures of RNA molecules, which are understood as mappings from sequence
space into shape space. These maps are non-invertible since there are always many orders of
magnitude more sequences than structures. Sequences folding into identical structures form
neutral networks. A neutral network is embedded in the set of sequences that are compatible
with the given structure. Networks are modeled as graphs and constructed by random choice
of vertices from the space of compatible sequences. The theory characterizes neutral
networks by the mean fraction of neutral neighbors (A). The networks are connected and
percolate sequence space if the fraction of neutral nearest neighbors exceeds a threshold
value (A > A*). Below threshold (A < A*), the networks are partitioned into a largest “giant”
component and several smaller components. Structures are classified as “common” or
“rare” according to the sizes of their pre-images, i.e. according to the fractions of sequences
folding into them. The neutral networks of any pair of two different common structures
almost touch each other, and, as expressed by the conjecture of shape space covering
sequences folding into almost all common structures, can be found in a small ball of an
arbitrary location in sequence space. The results from random graph theory are compared to
data obtained by folding large samples of RNA sequences. Differences are explained in
terms of specific features of RNA molecular structures. © 1997 Society for Mathematical
Biology

THEOREM 5. INTERSECTION-THEOREM. Let s and s' be arbitrary secondary
structures and C[s). C[s'] their corresponding compatible sequences. Then,

Cls]InC[s'] # 2.

Proof. Suppose that the alphabet admits only the complementary base pair [XY] and we
ask for a sequence x compatible to both s and s'. Then j(s,s') = D,, operates on the set of
all positions {x,,...,x,}. Since we have the operation of a dihedral group, the orbits are
either cycles or chains and the cycles have even order. A constraint for the sequence
compatible to both structures appears only in the cycles where the choice of bases is not
independent. It remains to be shown that there is a valid choice of bases for each cycle,
which is obvious since these have even order. Therefore, it suffices to choose an alternating
sequence of the pairing partners X and Y. Thus, there are at least two different choices for
the first base in the orbit. |

Remark. A generalization of the statement of theorem 5 to three differ-
ent structures is false.

Reference for the definition of the intersection
and the proof of the intersection theorem
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A ribozyme switch

E.A.Schultes, D.B.Bartel, Science
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One Sequence, Two Ribozymes:
Implications for the Emergence
of New Ribozyme Folds

Erik A. Schultes and David P. Bartel*

We describe a single RMA sequence that can assume either of two ribozyme
folds and catalyze the two respective reactions. The two ribozyme folds share
no evolutionary history and are completely different, with no base pairs (and
prabably no hydrogen bonds) in common. Minor variants of this sequence are
highly active for one or the other reaction, and can be accessed from prototype
ribozymes through a series of neutral mutations. Thus, in the course of evo-
lution, new RNA folds could arise from preexisting folds, without the need to
carry inactive intermediate sequences, This raises the possibility that biological
RMAs having no structural or functional similarity might share a common
ancestry. Furthermore, functional and structural divergence might, in some
cases, precede rather than follow gene duplication.

Related protein or RNA sequences with the
same folded conformation can often perform
very different biochemical functions, indi

ate isolates have the same fold and function, it
is lhnught that l.hey descended from a common
gh a series of mutational variants

that new biochemical functions can arise ﬁ'om
preexisting folds. But what evolutionary mech-
anisms give rise to sequences with new macro-
molecular folds? When considering the origin
of new folds, it is useful to picture, among all
sequence possibilities, the distribution of se-
quences with a particular fold and function.

that were eech functional. Hence, sequence het-
erogeneity among divergent isolates implies the
existence of paths through sequence space that
have allowed neutral drift from the ancestral
sequence to each isolate. The set of all possible
neutral paths composes a “neutral network,”
connecting in sequence space those widely dis-
persed seq sharing a particular fold and

This distribution can range very far in seq
space (1), For example, only seven nucleotides
are strictly conserved among the group I self-

activity, such that any sequence on the network
can potentially access very distant sequences by
neutral ions (3-5).

splicing introns, yet secondary (and p ly
tertiary) structure within the core of the ri-
bozyme is preserved (2). Because these dispar-
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Theoretical analyses using algorithms for
predicting RNA secondary structure have
suggested that different neutral networks are
interwoven and can approach each other very
closely (3, 5-&). Of particular interest is
whether ribozyme neutral networks approach
each other so closely that they intersect, If so,
a single sequence would be capable of fold-
ing into two different conformations, would
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have two different catalytic activities, and
could access by neutral drift every sequence
on both networks. With intersecting net-
works, RNAs with novel structures and ac-
tivities could arise from previously existing
rlhozymcs, without the need to carry non-

as lutionary inter-
mediates. l-icre, we explore the proximity of
neutral networks experimentally, at the level
of RNA function. We describe a close appo-
sition of the neutral networks for the hepatitis
delta virus (HDV) self-cleaving ribozyme
and the class III self-ligating ribozyme.

In choosing the two ribozymes for this in-
vestigation, an important criterion was that they
share no evolutionary history that might con-
found the evolutionary interpretations of our
results. Chuosmg at least one artificial -
b dependent evolutionary his-
tories. The class 111 hgasc is a synthetic ri-
bozyme isolated previously from a pool of ran-
dom RNA sequences (9). It joins an oligonu-
cleotide substrate to its 5' terminus. The
prototype ligase sequence (Fig. 1A) is a short-
ened version of the most active class 11l variant
isolated after 10 cycles of in vitro selection and

lution. This minimal retains the
activity of the full-length isolate (10). The HDV
ribozyme carries out the site-specific self-cleav-
age reactions needed during the life cycle of
HDV, a satellite virus of hepatitis B with a
circular, single-stranded RNA genome (17).
The prototype HDV construct for our study
(Fig. 1B) is a shortened version of the antige-
nomic HDV ribozyme (/2), which undergoes
self-cleavage at a rate similar to that reported
for other antigenomic constructs (13, 14).

The prototype class III and HDV ribozymes
have no more than the 25% sequence identity
expected by chance and no fortuitous strue-
tural similarities that might favor an intersec-
tion of their two neutral networks. Neverthe-
less, seq; can be designed that simul
neously satisfy the base-pairing requirements
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3l
Uy U
= g
P5 Aml U:E Fe
Cm=G Cm=G
C-G, C=G
I5/4 G A ‘G
ERAE - . S
cmg U7 (SagU” A f
UmA G_Ga J A ja/p
P4 Am=U (c-—; ~C e LI’
GmC J2/5 A =
At A, e d
g-? gu 1/ , '
PPP G
s ¥ ; Cm=G'
qi 2HOCwm G Am=U
sl U=A et
.!.x-i¢ E:S P C-G
(I; Cm=G G=C P4
AAAC= A=-U
G A-U
T G-C
UmsA G-0C
g:g P3 u u
GmC uu
C-G
1) )

Two ribozymes of chain lengths n = 88 nucleotides: An artificial ligase (A) and a natural cleavage
ribozyme of hepatitis-0-virus (B)
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The sequence at the intersection:

HDV fold

Ligase fold

An RNA molecules which is 88

nucleotides long and can form both

structures
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