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Cyclic reaction networks ~~ catalysts
Cyclic catalytic networks ™~ autocatalysts
Cyclic autocatalytic networks ™~ hypercycles

Neutrality - a source for coexistent competitors



1. Cyclic reaction networks ~ catalysts
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Fig. 1. The common catalytic mechanism of an enzyme according
to Michaelis and Menten involves (at least) threc intermediates:
the free enzyme (E), the enzyme-subsirate (ES) and the enzyme-
product complex (EP). The scheme demonstrates the equivalence
of catalytic action of the enzyme and cyclic restoration of the
intermediates in the turnover of the substrate (S) to the product
(P). Yet, it provides only a formal representation of the true mecha-
nism which may involve a stepwise activation of the substrate
as well as induced conformation changes of the enzyme.



The Bethe - vonWeizsdcker catalytic cycle ist responsible
- in part - for the energy production in massive stars.
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The tricarboxylic acid or citric acid cycle is fuelling
the metabolic reactions of the cell.



The citric acid
or Krebs cycle
(enlarged)
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The reaction network of cellular metabolism published by Boehringer-Mannheim.
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2. Cyclic catalytic networks = autocatalysts
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Fig. 4. The catalytic cycle represents a higher level of organization
in the hierarchy of catalytic schemes. The constituents of the cycle
E, — E, are themselves catalysts which are formed from some en-
ergy-rich substrates (S), whereby each intermediate E, is a catalyst
for the formation of E,, ;. The catalytic cycle seen as an entity
is equivalent to an autocatalyst, which instructs its own reproduc-
tion. To be a catalytic cycle it is sufficient, that only one of the
intermediates formed is a catalyst for one of the subsequent reac-
tion steps.



Complementary (£) replication of RNA as an example
of an autocatalytic cycle.
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A synthetic oligopeptide ligase
becomes a replicator for E = P

K. Severin, D.H. Lee, A.J. Kennan, M.R. Ghadiri, Nature 389, 706-709, 1997
D.H. Lee, J.R. Granja, J.A. MartinezK. Severin, M.R. Ghadiri, Nature 382, 525-528, 1996
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Cross-catalysis of peptide replicators

D.H. Lee, K. Severin, Y. Yokobayashi, M.R. Ghadiri, Nature 390, 591-594, 1997
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Cross-catalysis of two RNA enzymes leads to
self-sustained replication

Tracey A. Lincoln, Gerald F. Joyce, Science 323, 1229-1232, 2009
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RNA evolution of recombinant replicators

Tracey A. Lincoln, Gerald F. Joyce, Science 323, 1229-1232, 2009




3. Cyclic autocatalytic networks = hypercycles



Fig. 7. A catalytic hypercycle consists of self-instructive units I,
with two-fold catalytic functions. As autocatalysts or—more gener-
ally —as catalytic cycles the intermediates I, are able to instruct
their own reproduction and, in addition, provide catalytic support
for the reproduction of the subsequent intermediate (using the
energy-rich building material X). The simplified graph (b) indicates
the cyclic hierarchy
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Hypercycles with one and two members are
common in nature.
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Hypercycle dynamics for n=4
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4. Neutrality - a source for coexistent competitors
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Chemical kinetics of replication and mutation as parallel reactions



Fitness values f(Iy)
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A fitness landscape including neutrality



Frequency

Fig. 3.1. Behavior of mutant genes following their appearance in a
finite population. Courses of change in the frequencies of mutants
destined to fixation are depicted by thick paths. N, stands for the

effective population size and v is the mutation rate.
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Motoo Kimura

Is the Kimura scenario correct for frequent mutations?



Bulletin of Mathemarical Biology Yol. 50, No. 6, pp. 635-660, 1988, 0092-8240/8853.00 + 0.00
Printed in Great Britain. Pergamon Press ple
Socicty for Mathematical Biology

STATIONARY MUTANT DISTRIBUTIONS AND
EVOLUTIONARY OPTIMIZATION

® PEeETER SCHUSTER and JORG SWETINA
Institut fiir theoretische Chemie
und Strahlenchemie der Universitit Wien,
Wiihringerstrafie 17,
A 1090 Wien,
Austria

Molecular evolution is modelled by erroneous replication of binary sequences. We show how the
selection of two species of equal or almost equal selective value is influenced by its nearest
neighbours in sequence space. In the case of perfect neutrality and sufficiently small error rates
we find that the Hamming distance between the species determines selection. As the error rate
increases the fitness parameters of neighbouring species become more and more important. In
the case of almost neutral sequences we observe a critical replication accuracy at which a drastic
change in the “quasispecies”, in the stationary mutant distribution occurs. Thus, in frequently
mutating populations fitness turns out to be an ensemble property rather than an attribute of the
individual.

In addition we investigate the time dependence of the mean excess production as a function of
initial conditions. Although it is optimized under most conditions, cases can be found which are
characterized by decrease or non-monotonous change in mean excess productions.

1. Introduction. Recent data from populations of RNA viruses provided
direct evidence for vast sequence heterogeneity (Domingo et al., 1987). The
origin of this diversity is not yet completely known. It may be caused by the low
replication accuracy of the polymerizing enzyme, commonly a virus specific,
RNA dependent RNA synthetase, or it may be the result of a high degree of
selective neutrality of polynucleotide sequences. Eventually, both factors
contribute to the heterogeneity observed. Indeed, mutations occur much more
frequently than previously assumed in microbiology. They are by no means
rare events and hence, neither the methods of conventional population genetics
(Ewens, 1979) nor the neutral theory (Kimura, 1983) can be applied to these
virus populations. Selectively neutral variants may be close with respect to
Hamming distance and then the commonly made assumption that the
mutation backflow from the mutants to the wilde type is negligible does not
apply.

A kinetic theory of polynucleotide evolution which was developed during the
past 15 years (Eigen, 1971; 1985; Eigen and Schuster, 1979; Eigen et al., 1987;
Schuster, 1986); Schuster and Sigmund, 1985) treats correct replication and
mutation as parallel reactions within one and the same reaction network

635
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....... ACAUGCGAA --:---
....... AUAUACGAA -------
....... ACAUGCGCA -------
....... GCAUACGAA -
....... ACAUGCURAA ------
....... ACAUGCGAG -
....... ACACGCGAA -------
....... ACGUACGAA --:---
....... ACAUAGGAA -
....... ACAUACGAA -

Consensus sequence of a quasispecies of two strongly coupled sequences of
Hamming distance d,,(X;,X;) = 1.
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------- ACAUGAUUCCCCGAA -+++++*
------- AUAUAAUACCUCGAA -+++++*
------- ACAUAAUUCCCCGCA «+++++
------- GCAUAAUUUCUCGAA +++++-
------- ACAUGAUUCCCCUAA «++++*
------- ACAUAAGUCCCCGAG +++++*
------- ACACGAUUCCCCGAA «++++*
------- ACGUAAUUCCUCGAA «++++*
------- ACAUGCUUCCUAGAA -++++*
------- ACAUAAUUCCCCGAA «++++*
------- AUAUAAUUCUCGGAA «+++++*
------- ACAAAAUGCCCCGUA -+++++

C

UCGAA .......

------- ACAU-AUUCC

Consensus sequence of a quasispecies of two strongly coupled sequences of
Hamming distance d,,(X;,X;) = 2.
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Metastable structures
Conformational switches

v

Kinetic structures
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One Sequence, Two Ribozymes:
Implications for the Emergence
of New Ribozyme Folds

Erik A. Schultes and David P. Bartel*

We describe a single RMA sequence that can assume either of two ribozyme
folds and catalyze the two respective reactions. The two ribozyme folds share
no evolutionary history and are completely different, with no base pairs (and
prabably no hydrogen bonds) in common. Minor variants of this sequence are
highly active for one or the other reaction, and can be accessed from prototype
ribozymes through a series of neutral mutations. Thus, in the course of evo-
lution, new RNA folds could arise from preexisting folds, without the need to
carry inactive intermediate sequences, This raises the possibility that biological
RMAs having no structural or functional similarity might share a common
ancestry. Furthermore, functional and structural divergence might, in some
cases, precede rather than follow gene duplication.

Related protein or RNA sequences with the
same folded conformation can often perform
very different biochemical functions, indi

ate isolates have the same fold and function, it
is lhnught that l.hey descended from a common
gh a series of mutational variants

that new biochemical functions can arise ﬁ'om
preexisting folds. But what evolutionary mech-
anisms give rise to sequences with new macro-
molecular folds? When considering the origin
of new folds, it is useful to picture, among all
sequence possibilities, the distribution of se-
quences with a particular fold and function.

that were eech functional. Hence, sequence het-
erogeneity among divergent isolates implies the
existence of paths through sequence space that
have allowed neutral drift from the ancestral
sequence to each isolate. The set of all possible
neutral paths composes a “neutral network,”
connecting in sequence space those widely dis-
persed seq sharing a particular fold and

This distribution can range very far in seq
space (1), For example, only seven nucleotides
are strictly conserved among the group I self-

activity, such that any sequence on the network
can potentially access very distant sequences by
neutral ions (3-5).

splicing introns, yet secondary (and p ly
tertiary) structure within the core of the ri-
bozyme is preserved (2). Because these dispar-
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Theoretical analyses using algorithms for
predicting RNA secondary structure have
suggested that different neutral networks are
interwoven and can approach each other very
closely (3, 5-&). Of particular interest is
whether ribozyme neutral networks approach
each other so closely that they intersect, If so,
a single sequence would be capable of fold-
ing into two different conformations, would
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have two different catalytic activities, and
could access by neutral drift every sequence
on both networks. With intersecting net-
works, RNAs with novel structures and ac-
tivities could arise from previously existing
rlhozymcs, without the need to carry non-

as lutionary inter-
mediates. l-icre, we explore the proximity of
neutral networks experimentally, at the level
of RNA function. We describe a close appo-
sition of the neutral networks for the hepatitis
delta virus (HDV) self-cleaving ribozyme
and the class III self-ligating ribozyme.

In choosing the two ribozymes for this in-
vestigation, an important criterion was that they
share no evolutionary history that might con-
found the evolutionary interpretations of our
results. Chuosmg at least one artificial -
b dependent evolutionary his-
tories. The class 111 hgasc is a synthetic ri-
bozyme isolated previously from a pool of ran-
dom RNA sequences (9). It joins an oligonu-
cleotide substrate to its 5' terminus. The
prototype ligase sequence (Fig. 1A) is a short-
ened version of the most active class 11l variant
isolated after 10 cycles of in vitro selection and

lution. This minimal retains the
activity of the full-length isolate (10). The HDV
ribozyme carries out the site-specific self-cleav-
age reactions needed during the life cycle of
HDV, a satellite virus of hepatitis B with a
circular, single-stranded RNA genome (17).
The prototype HDV construct for our study
(Fig. 1B) is a shortened version of the antige-
nomic HDV ribozyme (/2), which undergoes
self-cleavage at a rate similar to that reported
for other antigenomic constructs (13, 14).

The prototype class III and HDV ribozymes
have no more than the 25% sequence identity
expected by chance and no fortuitous strue-
tural similarities that might favor an intersec-
tion of their two neutral networks. Neverthe-
less, seq; can be designed that simul
neously satisfy the base-pairing requirements
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The sequence at the intersection:

HDV fold

Ligase fold

An RNA molecules which is 88

nucleotides long and can form both

structures
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