The Group I Intron Conspiracy
(another adventure in conceptual biology)

Literature and data suggest a functional origin of self-splicing introns in oxygenic photosynthesis

Rainer Machné

Institute for Theoretical Chemistry,
University of Vienna, Austria
raim@tbi.univie.ac.at

Vienna 2006
Outline

- T4 phage *td* intron: a possible feedback regulation
- Light/redox regulated splicing of the *psbA* intron
- Self-splicing introns in protein-coding genes
- Genetic exchange in cyanobacterial phytoplankton
- Oxidative metabolism and self-splicing introns?
- How to proceed?
A mobile group I self-splicing intron in the T4 \(td \) gene

- \(td \) gene encodes for the dTMP Synthetase: \(dUMP \rightarrow dTMP \)
- \(nrdB \) and \(nrdD \) genes also contain group I introns
- Introns contain a homing endonuclease ORF: \(intron^- \rightarrow intron^+ \)

Miller et al. 2003 Microbiol Mol Biol Rev
Chu et al. 1984 PNAS, Gott et al. 1986 Cell
Waldsich et al. 2002 EMBO J
Mobile intron life cycle

HEG: homing endonuclease gene

highly conserved target sites: often adjacent to anticodon loops or catalytic centers

Belfort and Roberts 1997 NAR
Bell-Pedersen et al. 1990 NAR
Sandegren and Sjöberg 2004 JBC
T4 life cycle: Recombination Dependent Replication

Transcription

T4
Promoters: Early

Replication & Recombination

origin initiation

Single-Strand-Annealing Pathway I

Join-Copy Pathway II

Cut & paste or cut & replicate or cut & package

replicate cut & package

Packaging

Early RNA (term)

Core RNA Polymerase σ70
GTTTAC(17) gtggTAtaAT

Early RNA (rt)

Core RNA Polymerase σ70
HTTTTT(13) TAtaAT

Middle RNA

Late RNA

Late Proteins

Endonuclease VII

Terminase

Primase present

Primase absent

Late Proteins

Endonuclease VII

Terminase

Primase present

Primase absent

a perfect environment for HEG/intron mobility

Mosig 1998 Ann Rev Genet
PreRNA → mRNA → dTMP Synthetase

Positive splice regulators
- guanosines
- specific splicing factor Cyt-18 (Tyrosyl-tRNA synthetase)
- RNA chaperones, e.g. StpA
- HEG derived maturases

Negative splice regulators
- competitive, guanosine analog
 - deoxyguanosine and dideoxyguanosine
 - amino acid arginine
 - coenzyme flavin FMN
 - coenzyme thiamin pyrophosphates
 - antibiotics streptomycin, viomycin, capreomycin
- competitive, no guanosine analog
 - antibiotic lysinomycin
- non-competitive
 - aminoglycoside antibiotics
 - kanamycin, tobramycin, tetracycline, pentamidine, spectinomycin
 - NAD$^+$ > NADH
 - NADP$^+$ > NADPH

$td \text{ preRNA} \rightarrow td \text{ mRNA} \rightarrow \text{dTMP Synthetase}$

- **Positive splice regulators**
 - guanosines
 - specific splicing factor Cyt-18 (Tyrosyl-tRNA synthetase)
 - RNA chaperones, e.g. StpA
 - HEG derived maturases

- **Negative splice regulators**
 - competitive, guanosine analog
 - deoxyguanosine and dideoxyguanosine
 - amino acid arginine
 - coenzyme flavin FMN
 - coenzyme thiamin pyrophosphates
 - antibiotics streptomycin, viomycin, capreomycin
 - competitive, no guanosine analog
 - antibiotic lysinomycin
 - non-competitive
 - aminoglycoside antibiotics
 - kanamycin, tobramycin, tetracycline, pentamidine, spectinomycin
 - $\text{NAD}^+ > \text{NADH}$
 - $\text{NADP}^+ > \text{NADPH}$

Park and Kim 2001 Biochem Biophys Res Comm
Kim and Park 2003 Mol Cell Biochem
$td \text{ preRNA} \rightarrow td \text{ mRNA} \rightarrow d\text{TMP Simthetase}$

- **Positive splice regulators**
 - guanosines
 - specific splicing factor Cyt-18 (Tyrosyl-tRNA synthetase)
 - RNA chaperones, e.g. StpA
 - HEG derived maturases

- **Negative splice regulators**
 - competitive, guanosine analog
 - deoxyguanosine and dideoxyguanosine
 - amino acid arginine
 - coenzyme flavin FMN
 - coenzyme thiamin pyrophosphates
 - antibiotics streptomycin, viomycin, capreomycin
 - competitive, no guanosine analog
 - antibiotic lysinomycin
 - non-competitive
 - aminoglycoside antibiotics kanamycin, tobramycin, tetracycline, pentamidine, spectinomycin
 - $NAD^+ \rightarrow NADH$
 - $NADP^+ \rightarrow NADPH$

Machné 2006, unpublished
Some interesting facts:

- *td* translation is required for splicing (Waldsich et al. 1998 RNA)
- E. coli’s dTMP synthetase binds its own mRNA (Voeller et al. 1995 NAR)
"When lightning strikes twice" (©Marlene Belfort) ...

Some interesting facts:

- **aerobic RNR (nrdA/B)** uses T4’s own glutaredoxins (*nrdC* and/or *nrdH*) as electron donors
- T4 glutaredoxin can be used in both, glutaredoxin and thioredoxin pathways (Holmgren 1978 JBC)
- **pH** dependence of *nrdB* splicing, low **pH** (up to 7) delays splicing (Sjögren 1997 NAR)
- **anaerobic RNR (nrdD/G)** uses formate and NTPs as substrates (Andersson et al. 2000 JBC)
- anaerobic RNR (nrdD/G) has not used UTP as a substrate *in vitro* (Andersson et al. 2000 JBC)
- introns in different subunits (small: *nrdB*, large: *nrdD*): **are mixed protein complexes (NrdAG)** feasible?
nrdA/B, nrdD/G: the T4 aerobic and anaerobic RNRs

“When lightning strikes twice” (©Marlene Belfort) ...

Note the different substrates!

Some interesting facts:

- aerobic RNR (nrdA/B) uses T4’s own glutaredoxins (nrdC and/or nrdH) as electron donors
- T4 glutaredoxin can be used in both, glutaredoxin and thioredoxin pathways (Holmgren 1978 JBC)
- pH dependence of nrdB splicing, low pH (up to 7) delays splicing (Sjögren 1997 NAR)
- anaerobic RNR (nrdD/G) uses formate and NTPs as substrates (Andersson et al. 2000 JBC)
- anaerobic RNR (nrdD/G) has not used UTP as a substrate *in vitro* (Andersson et al. 2000 JBC)
- introns in different subunits (small: nrdB, large: nrdD): **are mixed protein complexes (NrdAG) feasible?**

... well, at least 2 out 3 possible strikes.
T4 nucleotide metabolism: 50% → 35% GC

C. K. Mathews: Metabolite Channeling

5 reductive steps from RNA to DNA: 1/dNTP + 1/dTTP

T4 (168903 bp, 32.5% T), under aerobic conditions:
2.65 * 168903 = **447593** NADPH / phage DNA equivalent
(- 2 * 4.639.675 E. coli DNA, - ??? dT Ribose)
Group I introns and oxidative metabolism, so far:

- *td* intron: *in vitro* non-competitive splice inhibition by NADP⁺, a by-product of reactions catalyzed by the *frd* and *td* gene products.

- All of T4’s intron containing gene products are involved in the reductive steps of nucleotide metabolism.
Group I introns and oxidative metabolism, so far:

- *td* intron: *in vitro* non-competitive splice inhibition by NADP⁺, a by-product of reactions catalyzed by the *frd* and *td* gene products.
- All of T4’s intron containing gene products are involved in the reductive steps of nucleotide metabolism.
Group I introns and oxidative metabolism, so far:

- *td* intron: *in vitro* non-competitive splice inhibition by NADP⁺, a by-product of reactions catalyzed by the *frd* and *td* gene products
- All of T4’s intron containing gene products are involved in the reductive steps of nucleotide metabolism

⇒ any examples for a redox regulation of group I splicing?
The *psbA* intron splicing is light/redox regulated

Light-regulated splicing of psbA pre-RNAs

The *Chlamydomonas reinhardtii* chloroplast *psbA* gene contains four large group I introns that self-splice efficiently in vitro, but only under nonphysiological conditions. These data suggest strongly that light coordinately stimulates splicing of all four *psbA* introns. Moreover, they demonstrate that this response to light is mediated by photosynthetic electron transport. Desphande et al. 1997 RNA

... This phenomenon suggests that at least one component required for [Neurospora] mitochondrial[25S] RNA splicing is regulated such that its synthesis or activity is increased in response to impairment of electron transport. Bertrand et al. 1982 Cell

Note the opposite effects of the two electron transport chains on splicing.
The *psbA* intron splicing is light/redox regulated

Light-regulated splicing of *psbA* pre-RNAs

The Chlamydomonas reinhardtii chloroplast *psbA* gene contains four large group I introns that self-splice efficiently in vitro, but only under nonphysiological conditions.

These data suggest strongly that light coordinately stimulates splicing of all four *psbA* introns. Moreover, they demonstrate that this response to light is mediated by photosynthetic electron transport.

Desphande et al. 1997 RNA

... This phenomenon suggests that at least one component required for *[Neurospora* mitochondrial*][25S r]* RNA splicing is regulated such that its synthesis or activity is increased in response to impairment of electron transport.

Bertrand et al. 1982 Cell

Note the opposite effects of the two electron transport chains on splicing.
Expression of psbA genes is regulated at multiple levels in the cyanobacterium Synechococcus sp. PCC 7942:

... in conditions where production of reduced Fd is in excess with respect to its consumption in carbon fixation (e.g. at high light or low temperature), the enzyme FdTR reduces Trx in significant amounts ...

... the split-tailed arrow represents a yet unknown mechanism by which the changes in the thiol redox state induce differential transcription [and translation] of the psbA genes. ...

Sippola and Aro 2000, Photochem Photobiol

Right: D1 repair cycle in photoinhibition

Cyanophage infection and photoinhibition in marine cyanobacteria. Bailey et al. 2004 Res Microbiol
Expression of psbA genes is regulated at multiple levels in the cyanobacterium Synechococcus sp. PCC 7942:

... in conditions where production of reduced Fd is in excess with respect to its consumption in carbon fixation (e.g. at high light or low temperature), the enzyme FdTR reduces Trx in significant amounts ...

... the split-tailed arrow represents a yet unknown mechanism by which the changes in the thiol redox state induce differential transcription [and translation] of the psbA genes. ...

Sippola and Aro 2000, Photochem Photobiol

Right: D1 repair cycle in photoinhibition

Cyanophage infection and photoinhibition in marine cyanobacteria. Bailey et al. 2004 Res Microbiol
Expression of psbA genes is regulated at multiple levels in the cyanobacterium Synechococcus sp. PCC 7942:

... in conditions where production of reduced Fd is in excess with respect to its consumption in carbon fixation (e.g. at high light or low temperature), the enzyme FdTR reduces Trx in significant amounts ...

... the split-tailed arrow represents a yet unknown mechanism by which the changes in the thiol redox state induce differential transcription [and translation] of the psbA genes. ...
Sippola and Aro 2000, Photochem Photobiol

Right: D1 repair cycle in photoinhibition

Cyanophage infection and photoinhibition in marine cyanobacteria. Bailey et al. 2004 Res Microbiol
Cyanophages

podophages (T7-like) and myophages (T4-like)

Fuhrman 2003 Nature
Organization of the \textit{psbDA} genes in cyanophages

\begin{enumerate}
\item[8] T7-like head-to-tail connector;
\item[9] T7-like capsid assembly protein;
\item[10] T7-like capsid protein
\end{enumerate}

\textit{hli}: thought to protect the photosynthetic apparatus from excess excitation energy during stress

\begin{enumerate}
\item[\textit{petE}]: plastocyanin;
\item[\textit{petF}]: ferredoxin
\end{enumerate}

\begin{enumerate}
\item[nrdB]: T4-like ribonucleotide reductase -subunit
\item[49]: T4-like restriction endonuclease VII
\item[\textit{td}]: T4-like thymidylate synthase (P-SSM4: \textit{nrdC} between \textit{psbD} and \textit{td} !)
\end{enumerate}

\begin{figure}
\centering
\includegraphics[width=\textwidth]{psbDA_genes.pdf}
\end{figure}

\textbf{NOTE}: black: host genes, white: unknown ORFs; grey: phage genes
Organization of the *psbDA* genes in cyanophages

- **intron**: group I, self-splicing
- **ORF178**: T4-like restriction endonuclease VII domain: involved in intron motility?
- **psbDA**: keep the host’s photosystem running, by supplying the D1/D2 repair cycle
- **S-PM2**: *nrdC* and *td* are 2.8 kb and 6.1 kb upstream

Mann et al. 2003 *Nature*, Millard et al. 2004 *PNAS*,
Organization of the *psbDA* genes in cyanophages

- **intron**: group I, self-splicing
- **ORF178**: T4-like restriction endonuclease VII domain: involved in intron motility?
- **psbDA**: keep the host’s photosystem running, by supplying the D1/D2 repair cycle
- **S-PM2**: *nrdC* and *td* are 2.8 kb and 6.1 kb upstream

a light/redox regulated psbA intron could allow a simple PS adaptation in different hosts and/or environments

Organization of the *psbDA* genes in cyanophages

- intron: group I, self-splicing
- ORF178: T4-like restriction endonuclease VII domain: involved in intron motility?
- *psbDA*: keep the host’s photosystem running, by supplying the D1/D2 repair cycle
- S-PM2: *nrdC* and *td* are 2.8 kb and 6.1 kb upstream

A light/redox regulated *psbA* intron could allow a simple PS adaptation in different hosts and/or environments

Phage *psbDA*: provide NADPH for RNA → DNA reduction?
‘Photosynthetic’ cyanophages
Group I introns and oxidative metabolism, so far:

- *td* intron: *in vitro* non-competitive splice inhibition by NADP⁺, a by-product of reactions catalyzed by the *frd* and *td* gene products.

- All of T4’s intron containing gene products are involved in the reductive steps of nucleotide metabolism.

- 1 example of each, light/redox and electron transport regulation of group I intron splicing.

- T4-like cyanophages carry a potentially regulatory group I intron in variable regions in the vicinity of *td* and *nrdB* genes.
Group I introns and oxidative metabolism, so far:

- *td* intron: *in vitro* non-competitive splice inhibition by NADP⁺, a by-product of reactions catalyzed by the *frd* and *td* gene products.
- All of T4’s intron containing gene products are involved in the reductive steps of nucleotide metabolism.
- 1 example of each, light/redox and electron transport regulation of group I intron splicing.
- T4-like cyanophages carry a potentially regulatory group I intron in variable regions in the vicinity of *td* and *nrdB* genes.
Group I introns and oxidative metabolism, so far:

- \textit{td} intron: \textit{in vitro} non-competitive splice inhibition by NADP$^+$, a by-product of reactions catalyzed by the \textit{frd} and \textit{td} gene products

- All of T4’s intron containing gene products are involved in the reductive steps of nucleotide metabolism

- 1 example of each, light/redox and electron transport regulation of group I intron splicing

- T4-like cyanophages carry a potentially regulatory group I intron in variable regions in the vicinity of \textit{td} and \textit{nrdB} genes

⇒ let’s take a broader look at group I introns!
Distribution of group I introns

- June 8 2004: 1400 group I introns
- 90% in fungi, plants, red and green algae
- Rare in bacteria and their phages, absent in archaea
- Animals: 2 in the mitochondrial genome of a sea anemone and 1 in the mitochondrial gene \textit{cytochrome c oxidase subunit I} of a coral
- Nucleus: 800 at 47 different sites in SSU rRNA and 44 sites in LSU rRNA \Rightarrow only rRNA
- 220 in mitochondrial genes and 370 are in plastid DNA \Rightarrow rRNA, tRNA and proteins

Haugen et al. 2005 Trends in Genetics
Distribution of group I introns

- June 8 2004: 1400 group I introns
- 90% in fungi, plants, red and green algae
- rare in bacteria and their phages, absent in archaea
- animals: 2 in the mitochondrial genome of a sea anemone and 1 in the mitochondrial gene *cytochrome c oxidase subunit I* of a coral
- nucleus: 800 at 47 different sites in SSU rRNA and 44 sites in LSU rRNA ⇒ only rRNA
- 220 in mitochondrial genes and 370 are in plastid DNA ⇒ rRNA, tRNA and proteins

Haugen et al. 2005 Trends in Genetics
Distribution of group I introns

- June 8 2004: 1400 group I introns
- 90% in fungi, plants, red and green algae
- rare in bacteria and their phages, absent in archaea
- animals: 2 in the mitochondrial genome of a sea anemone and 1 in the mitochondrial gene cytochrome c oxidase subunit I of a coral
- nucleus: 800 at 47 different sites in SSU rRNA and 44 sites in LSU rRNA ⇒ only rRNA
- 220 in mitochondrial genes and 370 are in plastid DNA ⇒ rRNA, tRNA and proteins

Haugen et al. 2005 Trends in Genetics
Group I introns in protein coding genes, eukar.

<table>
<thead>
<tr>
<th>Introns</th>
<th>Gene (ID)</th>
<th>Protein</th>
<th>Function</th>
<th>Species</th>
</tr>
</thead>
<tbody>
<tr>
<td>aI5α</td>
<td>coxl (div.)</td>
<td>cytochrome c oxidase</td>
<td>Respiration</td>
<td>S. cerevisiae</td>
</tr>
<tr>
<td>I</td>
<td>cob (div.)</td>
<td>cytochrome b</td>
<td>"</td>
<td>Ascomycete P. a.</td>
</tr>
<tr>
<td>I</td>
<td>nad5 (P26849)</td>
<td>NADH dehydrog. SU5</td>
<td>"</td>
<td>Liverwort M.p.</td>
</tr>
<tr>
<td>IA1</td>
<td>psaB (P36492)</td>
<td>P700 chlorophyll a apoprotein A2</td>
<td>PS I</td>
<td>Chlamydomonas m.</td>
</tr>
<tr>
<td>IB4, IA1</td>
<td>psbC (Q08684)</td>
<td>P6 protein</td>
<td>PS II</td>
<td>"</td>
</tr>
<tr>
<td>IA1</td>
<td>psbA (X13486)</td>
<td>D1 protein</td>
<td>PS II</td>
<td>Chlorophyceae</td>
</tr>
<tr>
<td>IA1</td>
<td>rbcL (BAC06369)</td>
<td>Rubisco large SU (carboxylase)</td>
<td>calvin cycle</td>
<td>Chlorella vulgaris C-27</td>
</tr>
<tr>
<td>I</td>
<td>chlL (P56291)</td>
<td>protochlorophyllide reductase</td>
<td>chlorophyll synth.</td>
<td>"</td>
</tr>
<tr>
<td>I</td>
<td>div.</td>
<td>URF14.2</td>
<td>homospermidine syn.</td>
<td>"</td>
</tr>
<tr>
<td>I</td>
<td>div.</td>
<td>TFIIS</td>
<td>transcription</td>
<td>"</td>
</tr>
<tr>
<td>I</td>
<td>div.</td>
<td>capsid Vp52</td>
<td>major capsid protein</td>
<td>"</td>
</tr>
</tbody>
</table>
Group I introns in protein coding genes, prokar.

<table>
<thead>
<tr>
<th>Introns</th>
<th>Gene (ID)</th>
<th>Protein</th>
<th>Function</th>
<th>Species</th>
</tr>
</thead>
<tbody>
<tr>
<td>I + ins.el.</td>
<td>tcdA-C34</td>
<td>enterotoxin</td>
<td>causes diarrhoea</td>
<td>Clostr. difficile</td>
</tr>
<tr>
<td>I</td>
<td>recA (AAK00736)</td>
<td>RecA DNA recombination</td>
<td>SOS DNA repair</td>
<td>Geobac. kaustophilus</td>
</tr>
<tr>
<td>IA2</td>
<td>polAc (AY769989)</td>
<td>DNA Pol A domain</td>
<td>DNA synth.</td>
<td>T7-like W31/Phi I</td>
</tr>
<tr>
<td>IA1/intein</td>
<td>bnrdE/bnrdF</td>
<td>aerobic RNR LSU</td>
<td>dNTP synth.</td>
<td>Bacillus SPβ proph.</td>
</tr>
<tr>
<td>2 * I</td>
<td>nrdE</td>
<td>“</td>
<td>“</td>
<td>Twort (Staph. aureus)</td>
</tr>
<tr>
<td>3 * I</td>
<td>orf142</td>
<td>late gene product</td>
<td>tail sheath protein ?</td>
<td>“</td>
</tr>
<tr>
<td>IA2</td>
<td>nrdB (NP_049841)</td>
<td>aerobic RNR SSU</td>
<td>dNTP synth.</td>
<td>T4 coliphages</td>
</tr>
<tr>
<td>IA2</td>
<td>nrdD (NP_049690)</td>
<td>anaerobic RNR LSU</td>
<td>“</td>
<td>“</td>
</tr>
<tr>
<td>IA2</td>
<td>td (NP_049848)</td>
<td>dTMP synth.</td>
<td>“</td>
<td>“</td>
</tr>
<tr>
<td>I</td>
<td>psbA</td>
<td>D1 protein</td>
<td>PSII</td>
<td>Cyanophages</td>
</tr>
<tr>
<td>2 * I</td>
<td>terL (AAR27298)</td>
<td>terminase LSU</td>
<td>DNA cleavage</td>
<td>Lactobac. phage</td>
</tr>
<tr>
<td>I</td>
<td>endo. (AAF24750)</td>
<td>endonuclease</td>
<td>“</td>
<td>Phages of</td>
</tr>
<tr>
<td>IA2</td>
<td>lysin (AAF24749)</td>
<td>lysozyme (S-S formation)</td>
<td>lysis</td>
<td>Strept. thermophilus</td>
</tr>
</tbody>
</table>
Group II introns in protein coding genes

<table>
<thead>
<tr>
<th>Introns</th>
<th>Gene (ID)</th>
<th>Protein</th>
<th>Function</th>
<th>Species</th>
</tr>
</thead>
<tbody>
<tr>
<td>II</td>
<td>nad4 (P26848)</td>
<td>NADH dehydrog. SU4</td>
<td>Respiration</td>
<td>Liverwort M.p.</td>
</tr>
<tr>
<td>II</td>
<td>nad2 (P26846)</td>
<td>NADH dehydrog. SU2</td>
<td>“</td>
<td>Wheat T.aestivum</td>
</tr>
<tr>
<td>II</td>
<td>nad7</td>
<td>NADH dehydrog. SU7</td>
<td>“</td>
<td>“</td>
</tr>
<tr>
<td>4 * II</td>
<td>nad2 (3800093)</td>
<td>NADH dehydrog. SU2</td>
<td>“</td>
<td>Rice</td>
</tr>
<tr>
<td>3 * II</td>
<td>nad4 (X57164)</td>
<td>NADH dehydrog. SU4</td>
<td>“</td>
<td>Hordeum vulgare</td>
</tr>
<tr>
<td>II</td>
<td>rpl2</td>
<td>mitoch. ribosomal pr. L2</td>
<td>“</td>
<td>Mustard (S. alba L.)</td>
</tr>
<tr>
<td>II</td>
<td>ndhA (4150866)</td>
<td>NADH dehydrog.</td>
<td>“</td>
<td>Maize, Spinach</td>
</tr>
<tr>
<td>2 * II</td>
<td>ycf3-psaAB</td>
<td>Yfc3</td>
<td>“</td>
<td>Euglena gracilis</td>
</tr>
<tr>
<td>II</td>
<td>atpF</td>
<td>ATPase SU F</td>
<td>“</td>
<td>“</td>
</tr>
<tr>
<td>9 * II</td>
<td>psaA, psaB</td>
<td>P700 chlorophyll a apoproteins</td>
<td>Photosystem</td>
<td>“</td>
</tr>
<tr>
<td>II, w. ORF mat2</td>
<td>psbC (P05700)</td>
<td>P6 protein</td>
<td>Photosystem</td>
<td>“</td>
</tr>
<tr>
<td>3 * II in mat2</td>
<td>mat2 (P05728)</td>
<td>Maturase</td>
<td>Photosys. ATPase</td>
<td>“</td>
</tr>
<tr>
<td>2 * III, psbCi4</td>
<td>psbC (P05700)</td>
<td>P6 protein</td>
<td>PS I</td>
<td>“</td>
</tr>
<tr>
<td>9 introns</td>
<td>atpI/H/F/A,</td>
<td>ATPase</td>
<td>PS II</td>
<td>“</td>
</tr>
<tr>
<td>“ (operon)</td>
<td>rps2/18</td>
<td>ribosomal pr. S2/S18</td>
<td>intron splicing</td>
<td>“</td>
</tr>
<tr>
<td>II twintron</td>
<td>psbF (CAA77913)</td>
<td>β-subunit of cytochrome b-559</td>
<td>PS II</td>
<td>“</td>
</tr>
<tr>
<td>54 * III</td>
<td>div.</td>
<td>ribosomal pr.</td>
<td>ribosomal</td>
<td>“</td>
</tr>
<tr>
<td>II (from cyanob)</td>
<td>psbA (AAQ84047)</td>
<td>D1 protein</td>
<td>PS cyt b/f</td>
<td>“</td>
</tr>
<tr>
<td>IIIB2</td>
<td>psbA (AY325305)</td>
<td>D1 protein</td>
<td>transcr./transl.</td>
<td>“</td>
</tr>
<tr>
<td>II</td>
<td>recA</td>
<td>RecA DNA recombination</td>
<td>PS II</td>
<td>E. myxocylindracea</td>
</tr>
<tr>
<td>4 inteins + 3 II</td>
<td></td>
<td>RNR</td>
<td>SOS DNA repair</td>
<td>Chlam. sp.CCMP 1619</td>
</tr>
<tr>
<td>“</td>
<td>nrd</td>
<td></td>
<td>dNTP synth.</td>
<td>Bacillus anthracis</td>
</tr>
<tr>
<td>“</td>
<td>nrd</td>
<td></td>
<td>“</td>
<td>cyanobacterium</td>
</tr>
<tr>
<td>“</td>
<td>nrd</td>
<td></td>
<td>“</td>
<td>Trichodesmium e.</td>
</tr>
</tbody>
</table>
Group I introns and oxidative metabolism, so far:

- *td* intron: *in vitro* non-competitive splice inhibition by NADP$^+$, a by-product of reactions catalyzed by the *frd* and *td* gene products.

- All of T4’s intron containing gene products are involved in the reductive steps of nucleotide metabolism.

- 1 example of each, light/redox and electron transport regulation of group I intron splicing.

- T4-like cyanophages carry a potentially regulatory group I intron in variable regions in the vicinity of *td* and *nrdB* genes.

- I/II introns in the electron transport chains of oxygenic photosynthesis, oxidative respiration (*and a few exceptions*)
Group I introns and oxidative metabolism, so far:

- *td* intron: *in vitro* non-competitive splice inhibition by NADP⁺, a by-product of reactions catalyzed by the *frd* and *td* gene products
- All of T4’s intron containing gene products are involved in the reductive steps of nucleotide metabolism
- 1 example of each, light/redox and electron transport regulation of group I intron splicing
- T4-like cyanophages carry a potentially regulatory group I intron in variable regions in the vicinity of *td* and *nrdB* genes
- I/II introns in the electron transport chains of oxygenic photosynthesis, oxidative respiration (*and a few exceptions*)

⇒ let’s take a look at the phytoplankton ecosystem!
Photosynthesis: gaia’s entropy reducer

Phytoplankton and the cyanobacteria ‘metaspecies’:

► 50 % of world’s O_2 production
► Origin and maintenance of the O_2 world
 ⇒ invention of oxygenic photosynthesis and oxidative respiration
► Different species at different marine strata:
 ► high-light, few nutrients
 ► adaptive (e.g. different psbA versions)
 ► low-light, more nutrients
► Minimal genomes
► Genomic exchange, e.g. between cyanobacteria and their phages

Photosynthesis: gaia’s entropy reducer

Phytoplankton and the cyanobacteria ‘metaspecies’:

- 50 % of world’s O_2 production
- Origin and maintenance of the O_2 world
 ⇒ invention of oxygenic photosynthesis and oxidative respiration
- Different species at different marine strata:
 - high-light, few nutrients
 - adaptive (e.g. different $psbA$ versions)
 - low-light, more nutrients
- Minimal genomes
- Genomic exchange, e.g. between cyanobacteria and their phages

Photosynthesis: gaia’s entropy reducer

Phytoplankton and the cyanobacteria ‘metaspecies’:

► 50 % of world’s O_2 production

► Origin and maintenance of the O_2 world
 ⇒ invention of oxygenic photosynthesis and oxidative respiration

► Different species at different marine strata:
 ➤ high-light, few nutrients
 ➤ adaptive (e.g. different psbA versions)
 ➤ low-light, more nutrients

► Minimal genomes

► Genomic exchange,
 e.g. between cyanobacteria and their phages

Photosynthesis: gaia’s entropy reducer

Phytoplankton and the cyanobacteria ‘metaspecies’:

- 50 % of world’s O_2 production
- Origin and maintenance of the O_2 world
 \Rightarrow invention of oxygenic photosynthesis and oxidative respiration
- Different species at different marine strata:
 - high-light, few nutrients
 - adaptive (e.g. different $psbA$ versions)
 - low-light, more nutrients
- Minimal genomes
 - Genomic exchange,
 e.g. between cyanobacteria and their phages

Photosynthesis: gaia’s entropy reducer

Phytoplankton and the cyanobacteria ‘metaspecies’:

- 50% of world’s O_2 production
- Origin and maintenance of the O_2 world
 \Rightarrow invention of oxygenic photosynthesis and oxidative respiration
- Different species at different marine strata:
 - high-light, few nutrients
 - adaptive (e.g. different $psbA$ versions)
 - low-light, more nutrients
- Minimal genomes
- Genomic exchange,
 e.g. between cyanobacteria and their phages

Photosynthesis: gaia’s entropy reducer

Phytoplankton and the cyanobacteria ‘metaspecies’:

- 50 % of world’s O_2 production
- Origin and maintenance of the O_2 world
 \Rightarrow invention of oxygenic photosynthesis and oxidative respiration
- Different species at different marine strata:
 - high-light, few nutrients
 - adaptive (e.g. different psbA versions)
 - low-light, more nutrients
- Minimal genomes
- Genomic exchange,
 e.g. between cyanobacteria and their phages

Evolution of the photosystems ...

(... and of oxidative phosphorylation!)

Olson and Blankenship 2004 Photosynthesis Res
Xiong and Bauer 2002 Annu Rev Plant Biol
Group I introns and oxidative metabolism, so far:

- *td* intron: *in vitro* non-competitive splice inhibition by NADP⁺, a by-product of reactions catalyzed by the *frd* and *td* gene products
- All of T4’s intron containing gene products are involved in the reductive steps of nucleotide metabolism
- 1 example of each, light/redox and electron transport regulation of group I intron splicing
- T4-like cyanophages carry a potentially regulatory group I intron in variable regions in the vicinity of *td* and *nrdB* genes
- I/II introns in the electron transport chains of oxygenic photosynthesis, oxidative respiration (*and a few exceptions*)
- T4-like intron containing cyanophages and cyanobacteria form an ecological ‘metaspecies’ with *dynamic genomes* of individual species; this ‘metaspecies’ is responsible for the O₂ world
Group I introns and oxidative metabolism, so far:

- *td* intron: *in vitro* non-competitive splice inhibition by NADP⁺, a by-product of reactions catalyzed by the *frd* and *td* gene products
- All of T4’s intron containing gene products are involved in the reductive steps of nucleotide metabolism
- 1 example of each, light/redox and electron transport regulation of group I intron splicing
- T4-like cyanophages carry a potentially regulatory group I intron in variable regions in the vicinity of *td* and *nrdB* genes
- I/II introns in the electron transport chains of oxygenic photosynthesis, oxidative respiration (and a few exceptions)
- T4-like intron containing cyanophages and cyanobacteria form an ecological ‘metaspecies’ with dynamic genomes of individual species; this ‘metaspecies’ is responsible for the O₂ world
Group I introns and oxidative metabolism, so far:

- \textit{td} intron: \textit{in vitro} non-competitive \textit{splice inhibition} by NADP$^+$, a by-product of reactions catalyzed by the \textit{frd} and \textit{td} gene products
- All of T4’s intron containing gene products are involved in the \textbf{reductive steps} of nucleotide metabolism
- 1 example of each, \textbf{light/redox} and electron transport regulation of group I intron splicing
- T4-like \textbf{cyanophages} carry a potentially regulatory group I intron in variable regions in the vicinity of \textit{td} and \textit{nrbB} genes
- I/II introns in the \textbf{electron transport chains} of oxygenic photosynthesis, oxidative respiration \textit{(and a few exceptions)}
- T4-like intron containing cyanophages and cyanobacteria form an ecological ‘metaspecies’ with \textbf{dynamic genomes} of individual species; this ‘metaspecies’ is responsible for the O_2 world

Could mobile introns with splicing sensitivity to redox state spread a simple adaptation mechanism, e.g. during transition from the anaerobic to the aerobic (O_2) world?
Mobile introns of rRNA and tRNA?

- Positive td splice regulators
 - guanosines
 - specific splicing factor Cyt-18 (Tyrosyl-tRNA synthetase)
 - RNA chaperones, e.g. StpA
 - HEG derived maturases

- Negative td splice regulators
 - competitive, guanosine analog
 - deoxyguanosine and dideoxyguanosine
 - amino acid arginine
 - coenzyme flavin FMN
 - coenzyme thiamin pyrophosphates
 - antibiotics streptomycin, viomycin, capreomycin
 - competitive, no guanosine analog
 - antibiotic lysinomycin
 - non-competitive
 - aminoglycoside antibiotics kanamycin, tobramycin, tetracycline, pentamidine, spectinomycin
 - $\text{NAD}^+ > \text{NADH}$
 - $\text{NADP}^+ > \text{NADPH}$

- Balance replication / transcription / translation with redox conditions?
- Emergency switch for cellular redox reactors?
- Horizontal spread of a general redox switch during global transition to high O_2?
Mobile introns of rRNA and tRNA?

- Positive *td* splice regulators
 - guanosines
 - specific splicing factor Cyt-18 (Tyrosyl-tRNA synthetase)
 - RNA chaperones, e.g. StpA
 - HEG derived maturases

- Negative *td* splice regulators
 - competitive, guanosine analog
 - deoxyguanosine and dideoxyguanosine
 - amino acid arginine
 - coenzyme flavin FMN
 - coenzyme thiamin pyrophosphates
 - antibiotics streptomycin, viomycin, capreomycin
 - competitive, no guanosine analog
 - antibiotic lysinomycin
 - non-competitive
 - aminoglycoside antibiotics kanamycin, tobramycin, tetracycline, pentamidine, spectinomycin
 - $\text{NAD}^+ > \text{NADH}$
 - $\text{NADP}^+ > \text{NADPH}$

- Balance replication / transcription / translation with redox conditions?
- Emergency switch for cellular redox reactors?
- Horizontal spread of a general redox switch during global transition to high O_2?
Mobile introns of rRNA and tRNA?

- **Positive td splice regulators**
 - guanosines
 - specific splicing factor Cyt-18 (Tyrosyl-tRNA synthetase)
 - RNA chaperones, e.g. StpA
 - HEG derived maturases

- **Negative td splice regulators**
 - competitive, guanosine analog
 - deoxyguanosine and dideoxyguanosine
 - amino acid arginine
 - coenzyme flavin FMN
 - coenzyme thiamin pyrophosphates
 - antibiotics streptomycin, viomycin, capreomycin
 - competitive, no guanosine analog
 - antibiotic lysinomycin
 - non-competitive
 - aminoglycoside antibiotics kanamycin, tobramycin, tetracycline, pentamidine, spectinomycin
 - $\text{NAD}^+ > \text{NADH}$
 - $\text{NADP}^+ > \text{NADPH}$

- **Balance replication / transcription / translation with redox conditions?**
- **Emergency switch for cellular redox reactors?**
- **Horizontal spread of a general redox switch during global transition to high O_2?**
Mobile introns of the nucleotide metabolism?

- RNR and TS genes present in cyanophages, adjacent to variable regions
- TS innovation is paradigmatic for RNA \rightarrow DNA / dU \rightarrow dT transitions
- RNR innovation is paradigmatic for both, RNA \rightarrow DNA and O_2 world transitions
- The T4 phage’s introns
 - Recent horizontal intron transfer in north-american phages
 - Urban sewage systems
 - a new habitat for coliphages and mobile elements?
 - nrd introns
 - fine-tune aerobic / anaerobic switching in sewage?
 - td intron
 - balance GC/AT ratio with redox state?
 - NADP$^+$ splice inhibition
 - fine-tune dNTP synthesis with available reductive potential?

Poole et al. 2001 Nat Rev Mol Cell Biol: Confounded cytosine! Tinkering and the evolution of DNA.
Sandegren and Sjöberg 2004 JBC: ... evidence for recent transfer of old introns.
Mobile introns of the nucleotide metabolism?

- RNR and TS genes present in cyanophages, adjacent to variable regions
- TS innovation is paradigmatic for $RNA \rightarrow DNA / dU \rightarrowdT$ transitions
- RNR innovation is paradigmatic for both, $RNA \rightarrow DNA$ and O_2 world transitions
- The T4 phage’s introns
 - Recent horizontal intron transfer in north-american phages
 - Urban sewage systems
 - a new habitat for coliphages and mobile elements?
 - nrd introns
 - fine-tune aerobic / anaerobic switching in sewage?
 - td intron
 - balance GC/AT ratio with redox state?
 - NADP$^+$ splice inhibition
 - fine-tune dNTP synthesis with available reductive potential?

Poole et al. 2001 Nat Rev Mol Cell Biol: Confounded cytosine! Tinkering and the evolution of DNA.
Sandegren and Sjöberg 2004 JBC: ... evidence for recent transfer of old introns.
Mobile introns of the nucleotide metabolism?

- RNR and TS genes present in cyanophages, adjacent to variable regions
- TS innovation is paradigmatic for RNA → DNA / dU → dT transitions
- RNR innovation is paradigmatic for both, RNA → DNA and O₂ world transitions
- The T4 phage’s introns
 - Recent horizontal intron transfer in north-american phages
 - Urban sewage systems
 ⇒ a new habitat for coliphages and mobile elements?
 - nrd introns
 ⇒ fine-tune aerobic / anaerobic switching in sewage?
 - td intron
 ⇒ balance GC/AT ratio with redox state?
 - NADP⁺ splice inhibition
 fine-tune dNTP synthesis with available reductive potential?

Poole et al. 2001 Nat Rev Mol Cell Biol: Confounded cytosine! Tinkering and the evolution of DNA.
Sandegren and Sjöberg 2004 JBC: ... evidence for recent transfer of old introns.
Mobile introns of the nucleotide metabolism?

- **RNR and TS genes** present in cyanophages, adjacent to variable regions
- **TS innovation** is paradigmatic for RNA → DNA / dU → dT transitions
- **RNR innovation** is paradigmatic for both, RNA → DNA and O₂ world transitions
- **The T4 phage’s introns**
 - **Recent horizontal intron transfer** in north-american phages
 - **Urban sewage systems** ➔ a new habitat for coliphages and mobile elements ?
 - **nrd introns** ➔ fine-tune aerobic / anaerobic switching in sewage ?
 - **td intron** ➔ balance GC/AT ratio with redox state ?
 - **NADP⁺ splice inhibition**
 fine-tune dNTP synthesis with available reductive potential ?

Poole et al. 2001 Nat Rev Mol Cell Biol: Confounded cytosine! Tinkering and the evolution of DNA.
Sandegren and Sjöberg 2004 JBC: ... evidence for recent transfer of old introns.
Mobile introns of the nucleotide metabolism?

- RNR and TS genes present in cyanophages, adjacent to variable regions
- TS innovation is paradigmatic for $RNA \rightarrow DNA / dU \rightarrow dT$ transitions
- RNR innovation is paradigmatic for both, $RNA \rightarrow DNA$ and O_2 world transitions
- The T4 phage’s introns
 - Recent horizontal intron transfer in north-american phages
 - Urban sewage systems
 ⇒ a new habitat for coliphages and mobile elements?
 - nrd introns
 ⇒ fine-tune aerobic / anaerobic switching in sewage?
 - td intron
 ⇒ balance GC/AT ratio with redox state?
 - NADP$^+$ splice inhibition
 fine-tune dNTP synthesis with available reductive potential?

Poole et al. 2001 Nat Rev Mol Cell Biol: Confounded cytosine! Tinkering and the evolution of DNA.
Sandegren and Sjöberg 2004 JBC: ... evidence for recent transfer of old introns.
Mobile introns of the nucleotide metabolism?

- RNR and TS genes present in cyanophages, adjacent to variable regions
- TS innovation is paradigmatic for $RNA \rightarrow DNA / dU \rightarrow dT$ transitions
- RNR innovation is paradigmatic for both, $RNA \rightarrow DNA$ and O_2 world transitions
- The T4 phage’s introns
 - Recent horizontal intron transfer in north-american phages
 - Urban sewage systems
 \Rightarrow a new habitat for coliphages and mobile elements?
 - nrd introns
 \Rightarrow fine-tune aerobic / anaerobic switching in sewage?
 - td intron
 \Rightarrow balance GC/AT ratio with redox state?
 - NADP$^+$ splice inhibition
 fine-tune dNTP synthesis with available reductive potential?

Poole et al. 2001 Nat Rev Mol Cell Biol: Confounded cytosine! Tinkering and the evolution of DNA.
Sandegren and Sjöberg 2004 JBC: ... evidence for recent transfer of old introns.
Mobile introns of the nucleotide metabolism?

- RNR and TS genes present in cyanophages, adjacent to variable regions
- TS innovation is paradigmatic for RNA → DNA / dU → dT transitions
- RNR innovation is paradigmatic for both, RNA → DNA and O_2 world transitions
- The T4 phage’s introns
 - Recent horizontal intron transfer in north-american phages
 - Urban sewage systems
 ⇒ a new habitat for coliphages and mobile elements?
 - nrd introns
 ⇒ fine-tune aerobic / anaerobic switching in sewage?
 - td intron
 ⇒ balance GC/AT ratio with redox state?
 - NADP^+ splice inhibition
 ⇒ fine-tune dNTP synthesis with available reductive potential?

Poole et al. 2001 Nat Rev Mol Cell Biol: Confounded cytosine! Tinkering and the evolution of DNA.
Sandegren and Sjöberg 2004 JBC: ... evidence for recent transfer of old introns.
Mobile introns of the nucleotide metabolism?

- RNR and TS genes present in cyanophages, adjacent to variable regions
- TS innovation is paradigmatic for $RNA \rightarrow DNA / dU \rightarrow dT$ transitions
- RNR innovation is paradigmatic for both, $RNA \rightarrow DNA$ and O_2 world transitions
- The T4 phage’s introns
 - Recent horizontal intron transfer in north-american phages
 - Urban sewage systems
 - a new habitat for coliphages and mobile elements?
 - nrd introns
 - fine-tune aerobic / anaerobic switching in sewage?
 - td intron
 - balance GC/AT ratio with redox state?
 - NADP$^+$ splice inhibition
 - fine-tune dNTP synthesis with available reductive potential?

Poole et al. 2001 Nat Rev Mol Cell Biol: Confounded cytosine! Tinkering and the evolution of DNA.
Sandegren and Sjöberg 2004 JBC: ... evidence for recent transfer of old introns.
How to proceed:

- Analyse self-splicing intron distribution via RFAM or develop intron I/II search strategies to scan whole genomes
- Detailed splicing studies with selected introns *in vitro* and e.g. in E. coli under redox stress
- Model of T4 phage metabolism, aerobic vs. anaerobic
- *In vitro* reconstitution of phage metabolism
- Model of photosynthesis and cyanophage metabolism
- Show function *in vivo*
How to proceed:

- Analyse self-splicing intron distribution via RFAM or develop intron I/II search strategies to scan whole genomes
- Detailed splicing studies with selected introns \textit{in vitro} and e.g. in E. coli under redox stress
- Model of T4 phage metabolism, aerobic vs. anaerobic
- \textit{In vitro} reconstitution of phage metabolism
- Model of photosynthesis and cyanophages metabolism
- Show function \textit{in vivo}
How to proceed:

- Analyse self-splicing intron distribution via RFAM or develop intron I/II search strategies to scan whole genomes
- Detailed splicing studies with selected introns in vitro and e.g. in E. coli under redox stress
- Model of T4 phage metabolism, aerobic vs. anaerobic
 - In vitro reconstitution of phage metabolism
 - Model of photosynthesis and cyanophage metabolism
- Show function in vivo
How to proceed:

- Analyse self-splicing intron distribution via RFAM or develop intron I/II search strategies to scan whole genomes
- Detailed splicing studies with selected introns in *vitro* and e.g. in E. coli under redox stress
- Model of T4 phage metabolism, aerobic vs. anaerobic
- *In vitro* reconstitution of phage metabolism
- Model of photosynthesis and cyanophagel metabolism
- Show function *in vivo*
How to proceed:

- Analyse self-splicing intron distribution via RFAM or develop intron I/II search strategies to scan whole genomes
- Detailed splicing studies with selected introns \textit{in vitro} and e.g. in E. coli under redox stress
- Model of T4 phage metabolism, aerobic vs. anaerobic
- \textit{In vitro} reconstitution of phage metabolism
- Model of photosynthesis and cyanophage metabolism
- Show function \textit{in vivo}
How to proceed:

- Analyse self-splicing intron distribution via RFAM or develop intron I/II search strategies to scan whole genomes.
- Detailed splicing studies with selected introns *in vitro* and e.g. in *E. coli* under redox stress.
- Model of T4 phage metabolism, aerobic vs. anaerobic.
- *In vitro* reconstitution of phage metabolism.
- Model of photosynthesis and cyanophage metabolism.
- Show function *in vivo*.
Thanks:

Chris K. Mathews
Renee Schroeder, Herbert Wank
TBI, Peter Schuster