$ clustalw2 four.seq > four.out $ RNAalifold -p four.out $ RNAfold -p < four.seq
__GCCGAUGUAGCUCAGUUGGG_AGAGCGCCAGACUGAAAAUCAGAAGGUCCCGUGUUCAAUCCACGGAUCCGGCA__ ..(((((((..((((.........)))).(((((.......))))).....(((((.......))))))))))))... minimum free energy = -15.07 kcal/mol (-13.50 + -1.57) ..(((((((..((((.........)))).(((((.......))))).....(((((.......))))))))))))... free energy of ensemble = -15.63 kcal/mol frequency of mfe structure in ensemble 0.405193RNAfold output:
>M10740 Yeast-PHE GCGGAUUUAGCUCAGUUGGGAGAGCGCCAGACUGAAGAUUUGGAGGUCCUGUGUUCGAUCCACAGAAUUCGCA ((((((((........((((.((((((..((((...........))))..))))))..))))..)))))))). (-21.00) (((((((,...,,.{,((((.((((((..((((...........))))..))))))..))))),)))))))). [-22.55] (((((((.........((((.((((((..((((...........))))..))))))..))))...))))))). {-19.50 d=8.36} frequency of mfe structure in ensemble 0.0805133; ensemble diversity 13.62 >K00349 Drosophila-PHE [...]
The output contains a consensus sequence and the consensus structure
in dot-bracket notation. The consensus structure has an energy of
kcal/mol, which in turn consists of the average free energy of the
structure
kcal/mol and the covariance term
kcal/mol. The
strongly negative covariance term shows that there must be a fair number of
consistent and compensatory mutations, but in contrast to the average free
energy it's not meaningful in the biophysical sense.
Compare the predicted consensus structure with the structures predicted for the individual sequences using RNAfold. How often is the correct ``clover-leaf'' shape predicted?
A structure annotated alignment or color annotated structure drawing can be produced using the coloraln.pl and colorrna.pl commands. Both read an RNA secondary structure plot and a dot plot created with RNAalifold -p and produce a secondary structure plot with color annotated seqence notation. Alternatively these can be generated by RNAalifold by using the -aln and -color options.
$ RNAalifold --color --aln four.aln $ gv aln.ps & $ gv alirna.ps &Sven Findeiss 2013-11-22