
Institut für Theoretische Biochemie, Universität Wien

Übungen zu

Strukturbiologie und Theoretischer

Chemie

Sommersemester 2010

Teil 1: Einführung in Linux, Darstellung von 2D/3D Daten und
nichtlineare Regression

Ronny Lorenz (ronny@tbi.univie.ac.at)

1

Contents

1 Make yourself familiar with the LINUX operating system 3
1.1 Introduction . 3
1.2 Useful commands . 3
1.3 Working with text files . 6
1.4 Redirecting input and output of a program 7
1.5 Textfiles with tabulated data . 7

2 2D plots 9
2.1 Grace . 9
2.2 gnuplot . 10

3 Curve fitting / Nonlinear regression 11

4 3D plots 11
4.1 2D projections of 3D data . 12
4.2 Gri - a programming language for drawing science-style graphs . 13

2

1 Make yourself familiar with the LINUX oper-
ating system

1.1 Introduction

For the next couple of tasks it will be necessary to use the so called Terminal

of the Linux operating system. Therefore, you have to get used to some basic
commands that make the life easier when navigating through your directories
and operating with textual data files.

The Terminal can be used to execute commands and start programs. There-
fore, the appropriate command has to be typed into the terminal window, fol-
lowed by hitting the Enter button. In the next sections we highlight this by:

$ command

You can interrupt a program or command that you have started in the terminal
any time by pressing Ctrl - c . By appending a & character at the end of the
command, the resulting process will operate in the background, not blocking the
terminal for further commands. This behavior can also be achieved by pressing
Ctrl - z and entering

$ bg

while your program is running. An example for starting a program in the
background could look like this:

$ firefox &

If you start writing down a longer path- or a longer command-name, you can
use the auto-completion feature of the terminal. Therefore write down the first
letters of your path or command and press the −−→

−−→ key. Doing so, the terminal
will either complete your started phrase automatically if its unambigous or it
will provide you with an overview of available commands or paths that start
with what you’ve already written. You will love this feature, especially when
navigating through complex directory structures. ;)

1.2 Useful commands

The started program operates from within your working directory, i.e. the di-
rectory where the command was exectued in. The unix directory structure is
dissimilar to the directory structure you may know from a Windows operat-
ing system. In Linux, as in other Unix like operating systems, the directory
structure is organized as a (partially fixed) tree with a single root node ’/’. All
directories and files in the directory tree are internal nodes or leaves of the tree.
A path to a certain directory or file is a path along the tree, starting at the root
node, where each change in the layer/depth is indicated by the ’/’ -character.
Hence, a path like /usr/bin/test denotes, that starting from the root directory
/ there is a directory named usr that contains another directory named bin. In
the latter directory then is a file named test.

To find out the current working directory there is the command pwd (print
working directory). So finding out the current working directory will look similar
to this:

3

$ pwd

/home/theochem

This directory is somewhat special as it is your so called home-directory. Home
directories of users of a Unix based system usually reside in the path /home.
The home directories are then named by the user account, e.g. theochem in
your cases.

Changing the working directory to a particular path in the directory tree
can be done by using the command cd (change directory), followed by the path,
e.g.:

$ cd /usr/bin

Omitting the path and simply calling the cd command without it results in a
change to the users home directory /home/username.

There are two special, reserved paths that can be used when browsing
through the directory structures, ’.’ and ’..’, where the first denotes the current
working directory and the latter its parent. So typing

$ cd ..

will change the working directory to the parent of the current working directory,
i.e. we will navigate to the parental node in the tree.

The command ls can be used to show all entries within the current directory.

$ ls

prints the list of names of all files and directories. To get a detailed view of all
files and directories of the current position in the directory tree, you can pass
a so called parameter to the ls command. Parameters are usually following the
command and start with one or two ’-’ letters. E.g.:

$ ls -l

will tell the ls command to create a detailed list view (parameter -l).
To get an overview of all available parameters of a program or command you

usually can use the parameter -h or –help. Try this with the ls command:

$ ls --help

For a more detailed overview of the functions and parameter options of a
command or program it is also useful to look inside the so called man-pages
or manual-pages. This can be done by typing

$ man command

In order to use the directory structure, we need to be able to create and
remove files or directories. It is also very useful to know how to change the
name and copy or move a certain file or directory to another location. The
command

$ touch filename

will create an empty text file named filename. To get rid of this file (remove it),
you can use the command

4

$ rm filename

BE AWARE, that this command will really delete your file instead of moving
it to some trashbin or something similar as you might expect. The file will be
removed unrecoverable till eternity! Keep this in mind when using the rm
command.

To create a new empty directory, you use the command mkdir (make direc-
tory).

$ mkdir butzemann

will create a new empty directory named butzemann. To remove a directory the
command rm can be used again. However, the parameter -r must be passed to
the rm command to indicate that you want to recursively remove the directory
with all its content.

$ rm -r butzemann

Renaming files and directories is not done with a special rename command
but with the move-command mv. The move command makes it possible to move
a certain file or directory to another location. Imagine you have a file named
foo and a directory named bar.

$ touch foo

$ mkdir bar

To move the file foo into the directory bar, the move command would look like
this:

$ mv foo bar

This only works, if there is a directory called bar in the current working di-
rectory. If this is not the case and there is neither a directory bar nor a file
with this name, the move command will rename the file foo to bar. So if the
second path passed to the move command is nonexistant yet, the first path will
be renamed to the second. This works for both, files and directories

$ mv foo bar

• moves file foo into directory bar if foo is a file and bar a directory

• moves directory foo into directory bar if foo and bar are both directories

• renames file foo to the name bar, if foo is a file and bar is non-existant

• renames directory foo to the name bar if foo is a directory and bar is
non-existant

Copying files is accomplished by the copy command cp. Regular files source1,
source2 and so on can be copied to a certain location destination in the directory
tree by typing

$ cp source1 source2 source3 destination/

5

You can use as many source files as you like but make sure, that the target
directory (destination) exists.

Copying directories to other locations is done by telling the cp command to
recursively copy the given sources. Therefore use the -r parameter option:

$ cp -r sourcedir1 sourcedir2 destination/

As in the previous examples, always use the parameters –help, -h or man com-
mand to find out how to deal best with a certain command.

1.3 Working with text files

Printing a textfile into the terminal window is done by using the command cat.
E.g. there is a special file in the directory tree of the linux operating system
that tells you about the specifications of the processor(s) in your workstation.
This file is located under /proc/ and named cpuinfo. So, in order to find out
about the CPUs in your computer, you can type

$ cat /proc/cpuinfo

Sometimes it is more convenient to be able to go through a text file page by
page or line by line instead of printing the entire file into the terminal. Therefore
the little program less exists.

$ less /proc/cpuinfo

This will display all lines of text in the file /proc/cpuinfo that fits into your
current terminal window. Using the arrow keys ↑ and ↓ , you can go
through your text line by line. The keys Page ↑ and Page ↓ will show the
previous or next page of text. Pressing q will quit the less program. You can
also search inside a text document by pressing \ followed by your query. This
will jump to the nearest occurance of the query in your textfile. By pressing n

or Shift ⇑ + n you will be directed to the next/previous occurance. As you
will deal with a lot of textfiles with data in the next lectures, there are many
helper commands/programs that assist you to obtain certain informations. The
program wc (word count) counts the number of words, lines and characters in
the specified text file. The program grep will find out if a certain specified string
is in your textfile. E.g. if you want to know if you have a pentium cpu in your
workstation you might call

$ grep Pentium /proc/cpuinfo

If so, the programm will print all lines of the textfile where your query was
found. It will print nothing, if the query is not found at all. Again, check

$ grep --help

or

$ man grep

to find out more about the possibilities you have using the grep command.

6

1.4 Redirecting input and output of a program

In a unix terminal, in contrast to the windows command prompt, you are able
to redirect all output of any program, e.g. to a textfile. This is done using the
so called piping feature of the shell. There are three special characters that tell
your terminal to pipe data from a program into a text file (>), to pipe a text
file as input into a program (<) or to pipe the data printed by one program as
input into another program (|). E.g. the call

$ ls -l > dirlisting.txt

will redirect the output of the ls program into a textfile named dirlisting.txt.
Note that using this command any previous content of the textfile dirlisting.txt
will be overwritten if this file already exists! Otherwise the file will be created.
To append the output of a program to an already existing file you can use the
special piping symbol >>

$ ls -l >> dirlisting.txt

These features are very powerful if you want to use several commands to
process your data where the data output printed in each intermediate step
is only used as input for the next steps and not needed after processing all
commands. E.g.

$ ps -e | grep -i terminal | wc -l

will first use the output of the cat program for the file /proc/cpuinfo as input
for the grep program, which in turn searches for lines containing the string
”terminal”, ignoring the characters case (case insensitive, -i). As we already
know, the grep command prints out the lines where it finds the search phrase.
This output will be used as input for the wc program which then counts the
number of lines in its input. This is useful for example if you want to know how
many times the terminal program runs on your system.

Another way to do the same would be calling each program seperately and
piping its output into a new textfile. Then, using the textfile produced by each
previous step as input, the next command is invoked and again, the output has
to be written into a new textfile.

$ ps -e > textfile1

$ grep -i < textfile1 > textfile2

$ wc -l < textfile2

The problem doing it this way is that we now have two textfiles that we have
to delete as we do not need the residing data anymore. Using the example with
the | piping above we circumvent this problem by not generating intermediate
textfiles in the first place. So if you get more involved with the terminal it might
be very useful to use piping.

1.5 Textfiles with tabulated data

The data files we will deal with after the introduction will always be textfiles
with data seperated by spaces or another special character like ’comma’. Each
line of the data files will contain a complete data set. For example have a look

7

into the file
http://www.tbi.univie.ac.at/~ronny/Leere/sb1/urbanareas.tsv

that contains the populations of large urban areas arround the world at different
points in history.

In order to only show certain columns of data or swap columns, e.g. only
the names of cities listed in the data file above, you can use the awk program.
Here the program call looks slightly more complicated than the ones you have
previously seen but the general usage in our cases will mostly stay the same.
Use the command

awk ’{print $1}’ urbanareas.tsv

to show the first columns of data, i.e. the city names. Use

$ awk ’{print $1,$3}’ urbanareas.tsv

to print the citynames followed by the country they are located in. You see, the
$x’es after the print denote the number of the column.

$ awk ’{print NF}’ urbanareas.tsv

will print the number of columns (Number of Fields) in your datafile.
Find out the number of the column that contains the population of the cities

in year 1980 and print a list of city names, followed by their population at this
time, the country and the geographic postition (altitude/longitude).

We might have touched only the tip of the iceberg with such rather simple
executions of the awk program. Indeed, it is much more powerful but would
exceed the time available to go further into detail. (check the man-pages of awk
for more information if you like)

Nevertheless, the last example usage of awk will show, how to print only a
certain range of datasets from our datafile. First find out the number of lines
in the data file using the wc command

$ wc -l datafile

Than, print the city name followed by the population in the year 1950 for
the last twenty cities in our datafile

$ awk ’BEGIN{i=1}{if(i>=x) print $1,$2; i++}’ urbanareas.tsv

where x has to be replaced by the line number of the beginning of the block
with the final 20 cities. In detail, the statement above tells awk to set a variable i
to the value 1 in the beginning. Then for each row of processed data this variable
is incremented (i++). Additionally, awk will only print the data column 1 and
2 if the variable i is greater or equal to the specified value x. This behavior can
also be achieved using the special variable NR which represents the current row
number. So a call of awk that does the same would look like this:

$ awk ’NR>=x {print $1,$2}’ urbanareas.tsv

As you might guess, the awk command is very useful for slicing out blocks
of data from a data file for further usage.

Two other very useful programs are head and tail. With them, you are able
to print the first n lines (head) or the last n lines (tail) of a file. You can invoke
these programs like this:

8

$ head -n 20 datafile and

$ tail -n 20 datafile

For further options these programs may provide check the manual pages or the
help parameter again.

This should be enough for a first very basic introduction about how to deal
with text files in the Linux OS. You should now be able to do a lot of ’magic’
stuff with the data you will be provided with. ;)

2 2D plots

In this section we are going to plot several data. First create a new directory in
your home that will contain the data files we are going to use. Open a terminal
and change into your home directory, if you are not already there. Create the
new directory and name it as you wish, e.g.:

$ cd

$ mkdir data_directory

Change into that newly created directory. Open a webbrowser and download
the data files we are going to use to the data directory you’ve just created.
Alternatively you can stay in the terminal and use the program wget that makes
it possible to download webcontent to your working directory

$ wget URL

The data we will use is available under the following URLs:
http://www.tbi.univie.ac.at/~ronny/Leere/sb1/data.1

http://www.tbi.univie.ac.at/~ronny/Leere/sb1/data.2

http://www.tbi.univie.ac.at/~ronny/Leere/sb1/data.3

http://www.tbi.univie.ac.at/~ronny/Leere/sb1/data.4

http://www.tbi.univie.ac.at/~ronny/Leere/sb1/data.5

After downloading all data, we are prepared to use the programs grace and
gnuplot to plot the provided data.

Before plotting anything with one of the following programs, take some time
to have a look inside the data files to ensure that the residing data fits your
expectations.

Hint: Use

$ head -n 20 datafile

to see the first 20 lines...

2.1 Grace

Lets first focus on Grace:
Invoke grace using the first data file by using the command:

$ xmgrace data.1

This will open a new window with an x-y plot of the data in data.1 Do the
same with all other data files and play arround with some settings in the Grace
window to adjust the axes, coloring etc...

Just make yourself a bit familiar with all the settings possible.

9

2.2 gnuplot

Gnuplot is another program to visualize data. But, in contrast to grace, gnuplot
does not provide you a window with menues to change viewing options.

$ gnuplot

will start an interactive gnuplot session that is somehow similar to the usage of
a terminal.

You can easily plot the data in the first file by typing:

gnuplot> plot "data.1"

This will produce an x-y plot of the data in file data.1, where gnuplot adjusts
the x- and y-axis according to the data provided. By default, the data points
from the data file are plotted as little plus sings +. You can change this behavior
by appending with lines to the plot command:

gnuplot> plot "data.1" with lines

Additionally, gnuplot assumes the data to be provided as one or two columns
in your data file. If there is just one column in your file, gnuplot uses that data
for the y-axis. Otherwise, if two columns of data are provided, the first column
denotes the x- and the second the y-coordinate. If your data file has more than
two columns or your data is provided in another order, you can tell gnuplot
which of them should be used for which coordinates with the statement using.

gnuplot> plot "urbanareas.tsv" using 4:5 with lines

This will produce a plot of the data in urbanareas.tsv where the 4th column is
used as x- and the 5th column as y-coordinate.

In order to adjust the plot to your own needs, e.g. the range of the x- or
y-axis, colors, logarithmic scales and so on, there exist several settings that can
be set/unset using the commands set and unset

set xrange [0:1000] will set the range of the x-axis to the

interval [0:1000]

set yrange [-5:10] similar to xrange

set logscale x turns on logarithmic scaling for the x axis

set logscale y - "" - y axis

unset xrange unsets a specified xrange, i.e. the range

of the x-axis will be determined by the data

unset logscale x unsets logarithmic scaling for the x axis

Consult the implemented help function within the gnuplot interactive shell
by typing

gnuplot> help

or

gnuplot> help plotting

10

Alternatively, you can visit the website
http://t16web.lanl.gov/Kawano/gnuplot/index-e.html

to obtain more information about how to tweak the output. Using this website,
find out how to save your graph as a postscript file that you may include in any
scientific work.

You can leave the interactive gnuplot session by typing

gnuplot> exit

3 Curve fitting / Nonlinear regression

After inspecting the data given in the files you just downloaded with grace and
gnuplot we return to grace for the next task of fitting a function to the data
provided.

Open the menu entry Data/Transformations/Non-linear curve fitting.
Select your dataset in the left half of the window (Source). Enter a polynome
of the variable x with parameters A0, . . . , AN in the Formula field of the Main

tab. Type in a non-linear function (formula) like this:

y = A0 + A1 * cos(A2 * x)

Then select the number of variables you’ve introduced in the drop-down
menue and provide good estimates for these variables if possible.

You can use as many parameters as you want and make the functions as
complicated as possible. Mathematical operators you may use inside you non-
linear polynome are:

+: addition, e.g.: (a + b)

*: multiplication, e.g.: (a*b)

^: power of, e.g.: (x^2)

It is also possible to use trigonometric functions like sin(), cos(), the
logarithm log() or the exponential exp()

Be aware of the fact that you should first have a look at the data curve itself
to get a good guess of the underlying function. If you can’t find any function that
fits your data or if the data does look too strange try other ways to find out prop-
erties of the underlying data. Grace provides you with tools for analyzing the
distribution of the values (you can make histograms, Fourier transformations,
etc.). You can find the appropriate menu entries under Data/Transformations.
After examining certain properties of the distribution of your data you might
be able to get an idea of the underlying function that produced the data

4 3D plots

As you might have found out, one of the data sets does not provide 2- but
3-dimensional data. Unfortunately, grace is not able to plot 3D so we have to
switch back to gnuplot again...

Start gnuplot and use the splot command to plot the data into a 3D coordi-
nate system

gnuplot> splot "datafile"

11

Like in the previous 2D plot, gnuplot uses + signs to mark your data points.
Change that behavior by appending with lines to the splot command again.
This will draw a line that connects all data points in the order the data was
given. Of course, this might produce ugly looking results, so gnuplot provides
you with a way to fit your data points into a grid of given precision. After that
procedure you will be able to plot the resulting grid instead of just the data
itself.

This is especially useful if you do not have data that is distributed in a grid
like way but scattered. Use

gnuplot> set dgrid3d x,y,w

and replace x with the number of gridpoints in x direction, y with the number of
gridpoints in y direction and w with a weighting factor (1, 2, 4, 8). The weighting
factor w influences the degree of weighting of the given z value. Each z value
is weighted inversely by the distance from the gridpoints raised to the power of
the weighting factor (norm). The parameter w may be omitted. Default values
are x = y = 10 and w = 1. See also

gnuplot> help dgrid3d

After setting a reasonable grid, type

gnuplot> replot

to plot the data last used again.
Try different grid sizes and weighting norms to investigate their influence on

the data.

4.1 2D projections of 3D data

In most cases of 3D plot you can rotate the coordinate system as much as you
want in any direction but never get a good overview of all data provided.

This problem can be circumvented by depicting the 3rd dimension by some-
thing else than an additional spatial dimension in the underlying coordinate
system. A possibility to do so is for example color- or intensity-coding using
gradients and/or step functions.

You can do this easily in gnuplot by setting the pm3d option (palette mapped
3D). NOTE that this feature can only be used when our data is converted into
a grid as we did before with dgrid3d

First consult the help provided with

gnuplot> help pm3d

Then make a first color coded plot by typing

gnuplot> set pm3d

gnuplot> replot

Deactivating the color encoded third dimension again is done by entering

gnuplot> unset pm3d

It is also posssible to make a map of the color encoded 3D data at the bottom
of the graph with

12

gnuplot> set pm3d at b

To hide the lines of the graph and only show the pm3d generated color
encoding, you can type

gnuplot> set hidden3d

gnuplot> replot

For additional features visit the following webpage again:
http://t16web.lanl.gov/Kawano/gnuplot/index-e.html

4.2 Gri - a programming language for drawing science-
style graphs

A more complex example of producing 2D projections from 3D data will be
highlighted in this section. Here, we use a program similar to gnuplot, named
gri. It also provides you with an interactive terminal where you can type in
several commands for data source selection, data post-processing and alteration
of the resulting plot.

You can download the gri -reference- and the gri -command-reference-card
under
http://gri.sourceforge.net/refcard.pdf and
http://gri.sourceforge.net/cmdrefcard.pdf

As you see in the reference cards, it is a very powerful language for drawing
science-style graphs. We will rely on a small example that should just show you
what may be possible if you have 3D data and want to produce nice graphs to
include in your diploma- or Phd-thesis.

Usually gri does not run interactively as it produces a postscript image of
the resulting graph that can not be viewed in the intermediate steps. There-
fore, all commands you may want to pass to gri can be written into a textfile
commands.gri that has the following structure:

command 1

command 2

command 3

...

command n

quit

Gri will execute all the commands listed in your commandfile commands.gri
when you invoke it in the following way:

$ gri commands.gri yourdata.dat

You will be provided with an example command file and some example data.
Download it here:
http://www.tbi.univie.ac.at/~ronny/Leere/sb1/commands.gri

http://www.tbi.univie.ac.at/~ronny/Leere/sb1/sv11.2D.out

13

http://www.tbi.univie.ac.at/~ronny/Leere/sb1/switch.2D.out

E.g. using wget :

$ wget http://www.tbi.univie.ac.at/~ronny/Leere/sb1/commands.gri

$ wget http://www.tbi.univie.ac.at/~ronny/Leere/sb1/sv11.2D.out

$ wget http://www.tbi.univie.ac.at/~ronny/Leere/sb1/switch.2D.out

First have a look inside the first data file.

$ less sv11.2D.out

It is filled with a lot of information, not entirely given as tabulated columns.
In short, this data represents the output of a bioinformatics tool that computes
the free energy of a given RNA molecule. RNA can can form stable secondary
structures by base pairing and base stacking. A widely used nearest neighbor
model with tons of parameters is then used to compute the free energy of a given
secondary structure of a particular RNA. Furthermore, there exist algorithms
that compute the minimum of free energy and the according secondary struc-
ture. RNA does not reside in a fixed configuration but may change its secondary
structure. Thus, another algorithm computes the partition function of all sec-
ondary structure conformations compatible with the RNA sequence. Given the
partition function one can calculate the Gibbs free energy of the ensemble of
secondary structures. If a neighborhood relation is introduced that tells which
secondary structure is a neighbor of another, e.g. if you delete/introduce a base
pair, you get a so called energy landscape. This requires that each secondary
structure state is associated with a certain free energy value. This energy land-
scape is a high dimensional raum (the number of dimensions relies on the number
of neighbors a secondary structure may have) that can not be easily depicted.
However, given one or two reference structures, one is able to project the en-
tire high dimensional space onto a 2- or 3-dimensional plane. In our example
this is done by partitioning all secondary structure states into so called distance
classes originated by two given reference structures. This means that for each
possible secondary structure state, the distance to the two reference structures
according to the underlying neighborhood relation is computed which results in
a (x,y) pair where x is the distance to the first and y the distance to the second
reference structure. This partitioning can than be used to compute the repre-
sentative with a minimum of free energy and/or the partition function/Gibbs
free energy of the partitions. However, this is the data inside the example given.

In the first line of sv11.2D.out is the sequence of the RNA molecule. The
second line denotes a secondary structure with minimum of free energy in dot-
bracket notation, followd by the fre energy in kcal/mol. The third and fourth
line show the two reference structures with their appropriate free energy. In
the next line you see the Gibbs free energy of the ensemble of all secondary
structures compatible with the sequence given. Then a headerline of the follow-
ing tabulated data is given that tells you which data is given in which column.
The first column (k) is the distance to the first reference, the second (l) the
distance to the second reference. Then there is a set of probabilities followed by
the minimum free energy, the gibbs free energy and the minimum free energy
structure of the partition.

We will use this data to draw a 2D projection of the following 3D data:
(distance1, distance2, MFE)

14

Therefore consult the given command file commands.gri. Do not get confused
with all the statements written there! Before each statement there is a
line that starts with //. This is recognized as a comment and does not influence
the plot produced by gri. It just helps you to know what is done in the next
step.

To understand what is going on when gri is executing all the commands
given in commands.gri, execute the command file using the provided data first.

$ gri commands.gri sv11.2D.out

The command file you got has a very special line on top:

#!/usr/bin/gri

This makes it possible to execute the textfile itself in the terminal, without
writing the command gri in front. To do so, you first have to make the textfile
executable using the command chmod :

$ chmod +x commands.gri

Now you are able to produce the postscript plot using the command file
alone:

$./commands.gri sv11.2D.out

If you get an error message in your terminal that contains a line like:

bad interpreter: No such file or directory

you have to find out the exact path where the gri preogram is located in your
directory tree. This can be done typing

$ which gri

or

$ whereis gri

You should now get a path like /usr/bin/gri or something similar if gri is
installed in your system. Copy this path and replace the part after #! in the
first line of your commands.gri with it. This line, by the way, tells the terminal
which program it should use when executing a text file.

After everything went fine, check the content of you current working direc-
tory with the ls command

$ ls

You should now see a file named sv11.2D.out.ps that contains the plot produced
by gri. This file can be viewed by any program that can read the postscript
format, e.g. gv, evince, etc..

$ evince sv11.2D.out.ps

You can also convert the postscript image to a PDF using the ps2pdf com-
mand:

$ ps2pdf sv11.2D.out.ps

15

This produces a file named sv11.2D.out.pdf that can be viewed by any PDF -
viewer.

After looking at hte produced plot, go through commands.gri to find out
which commandss were necessary to produce the plot.

You can easily comment out some commands in the command file by putting
a // in front of it...

16

Online resources that might be helpful:

• Grace related

– Grace website
http://plasma-gate.weizmann.ac.il/Grace/

• Gnuplot related

– Gnuplot website
http://www.gnuplot.info/

– Einführung in gnuplot - Rechenzentrum Uni Osnabrück
http://www.rz.uni-osnabrueck.de/Zum_Nachlesen/Skripte_Tutorials/

Gnuplot_Einfuehrung/pdf/gnuplot.pdf

– Gnuplot reference card
http://www.gnuplot.info/docs_4.0/gpcard.pdf

– Not so frequently asked questions about gnuplot
http://t16web.lanl.gov/Kawano/gnuplot/index-e.html

• Gri related

– Gri website
http://gri.sourceforge.net

– Gri reference card
http://gri.sourceforge.net/refcard.pdf

– Gri command reference card
http://gri.sourceforge.net/cmdrefcard.pdf

– Gri documentation
http://gri.sourceforge.net/gri.pdf

• unrelated
http://www.google.com ;)

Good luck and may this tutorial help you for accomplishing further tasks!

17

