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RNA Secondary Structures
RNAs fold hierarchical (A) — (B) — (C)

(A) 5' - GCGCUCUGAUGAGGCCGCAAGGCCGAAACUGCCGCAAGGCAGUCAGCGC- 3'

©)

Secondary Structure (B):
¢ Set of nested base pairs
e Captures majority of stabilizing interactions
Many thermodynamic properties can be predicted efficiently
Very good prediction accuracy for small RNAs
Accuracy drops to 40%-70% for longer sequences



RNA Secondary Structures - Loops vs. Base Pairs
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e secondary structures s can be uniquely decomposed into loops L
stabilizing energy contributions (mostly) from stacked base pairs
destabilizing contributions from unpaired bases in loops

e each loop L is assigned a free energy contribution E; !
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"Turner, DH & Mathews, DH (2009). NNDB: The nearest neighbor parameter
database for predicting stability of nucleic acid secondary structure., Nucleic Acids
Research 38, D280-D282



RNA Secondary Structures - Statistical Thermodynamics
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Partition Function:

Probability of a structure:
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RNA Secondary Structures - Prediction

Dynamic Programming (DP) algorithm?
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2Nussinov, R & Pieczenik, G & Griggs, JR and Kleitman, DJ (1978). Algorithms for
Loop Matchings., SIAM J. Appl. Math., 35(1), 68-82



RNA Secondary Structures - Prediction

Dynamic Programming (DP) algorithm?
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RNA Secondary Structures - Prediction
Dynamic Programming (DP) algorithm? 3

0 | 0]
oo——o

i j i+l oo wu+tl j
hairpin interior multibranch

VNNV =V

iit1 ut+l1j—1j

Im

:
>,
»
Bb

)
’
)

2Zuker M and Stiegler P (1981). Optimal computer folding of large RNA sequences
using thermodynamics and auxiliary information., Nucleic Acids Res, 9(1):133-148

3McCaskill JS (1990). The equilibrium partition function and base pair binding
probabilities for RNA secondary structure., Biopolymers, 29(6-7):1105-1119



RNA Secondary Structures - Prediction

Dynamic Programming (DP) algorithm
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Asymptotic complexity: O(rn?) time and O(rn?) memory



Multiple Interacting Nucleic Acid Strands?

Straight-forward extension of single sequence case
¢ consider complexes of N strands, i.e. one connected component
e restrict state space to intermolecular base pairs w/o crossings
e concatenate all strands (n=n;+n,+...+ny)
prohibit strand nicks in “regular”’ loops
¢ treat cases with nicks as “external” loops w/ additional rule
¢ process all non-cyclic permutations & of strand concatenations
e correct for overcounting of symmetric cases

2Dirks, RM, Bois, JS, Schaeffer, JM, Winfree, E, and Pierce, NA (2007).
Thermodynamic analysis of interacting nucleic acid strands., SIAM Rev., 49:65-88.



Multiple Interacting Nucleic Acid Strands?

Straight-forward extension of single sequence case
¢ consider complexes of N strands, i.e. one connected component
e restrict state space to intermolecular base pairs w/o crossings
e concatenate all strands (n=n;+n,+...+ny)
prohibit strand nicks in “regular”’ loops
¢ treat cases with nicks as “external” loops w/ additional rule
¢ process all non-cyclic permutations & of strand concatenations
e correct for overcounting of symmetric cases

Q Q
il

i+l os)o(s)+1  j—1

2Dirks, RM, Bois, JS, Schaeffer, JM, Winfree, E, and Pierce, NA (2007).
Thermodynamic analysis of interacting nucleic acid strands., SIAM Rev., 49:65-88.



Multiple Interacting Nucleic Acid Strands?

Straight-forward extension of single sequence case
¢ consider complexes of N strands, i.e. one connected component
e restrict state space to intermolecular base pairs w/o crossings
e concatenate all strands (n=n;+n,+...+ny)

prohibit strand nicks in “regular”’ loops

¢ treat cases with nicks as “external” loops w/ additional rule

¢ process all non-cyclic permutations & of strand concatenations

e correct for overcounting of symmetric cases
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Interacting Nucleic Acid Strands - Base Pairing Probabilities

For single strand case (DP algorithm with O(n?) time, O(n*) memory):
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Interacting Nucleic Acid Strands - Base Pairing Probabilities
For single strand case (DP algorithm with O(n?) time, O(n*) memory):
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For complexes of N strands:

Pkl = Zw piilm

= *Zle 102,[x], with
Ouiln] = O[m] +  Owln] + O[]
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not enclosed by any bp  enclosed by bp  enclosed by bp w/ nick in loop

What is the asymptotic complexity to compute Oy [x]?



Interacting Nucleic Acid Strands - Base Pairing Probabilities

Additional case for nicked loops (for particular x):

Or1= Qiz + Q;%z
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Interacting Nucleic Acid Strands - Base Pairing Probabilities

Additional case for nicked loops (for particular x):

Or1= Qiz + Qiz
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Computing all O, by considering all enclosing pairs and N — 1
strand nicks seems to require O(n*N) operations



Interacting Nucleic Acid Strands - Base Pairing Probabilities

Additional case for nicked loops (for particular x):

Or1= Qiz + Q/%z
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Computing all 0 ; by considering all enclosing pairs and N — 1
strand nicks seems to require O(n*N) operations
¢ Dirks et al., 2007:
“... equilibrium probability of each intrastrand and interstrand base pair ... can be
calculated by backtracking through the partition function algorithm ... applying a
particular algorithmic transformation at each step”
* Wolfe et al., 2017:
“... the equilibrium base-pairing properties ... must be calculated for each
complex j € ¥ using ©(|¢;*) dynamic programs.” (here, |¢;| = n)



Interacting Nucleic Acid Strands - Base Pairing Probabilities

Additional case for nicked loops (for particular x):

Or1= sz + Q/%z
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Computing all 0 ; by considering all enclosing pairs and N — 1
strand nicks seems to require O(n*N) operations
¢ Dirks et al., 2007:
“... equilibrium probability of each intrastrand and interstrand base pair ... can be
calculated by backtracking through the partition function algorithm ... applying a
particular algorithmic transformation at each step”
* Wolfe et al., 2017:
“... the equilibrium base-pairing properties ... must be calculated for each
complex j € ¥ using ©(|¢;|*) dynamic programs.” (here, |¢;| = n)

Still, no reference to the algorithm, so how to achive that?



Interacting Nucleic Acid Strands - Base Pairing Probabilities

case 0: strand nick is on 5’ side
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Apply Dynamic Programming paradigm:
¢ Trade computation time against memory consumption3
¢ Extract parts that are computed redundantly for different Q,f:,

3Similar to McCaskill, JS (1990). The equilibrium partition function and base pair
binding probabilities for RNA secondary structure., Biopolymers, 29:1105-1119.



Interacting Nucleic Acid Strands - Base Pairing Probabilities

case 0: strand nick is on 5’ side
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® pre-compute “enclosed” part Yf} up to (s)

* re-use Y7, for all k



Interacting Nucleic Acid Strands - Base Pairing Probabilities

case 0: strand nick is on 5’ side
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15 step (fixed 1):

le,/ = Yi'(k,1>,,+ Y Qw(s)+1,k—le5,Il (indep. of i and j)
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Interacting Nucleic Acid Strands - Base Pairing Probabilities

case 0: strand nick is on 5’ side
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15 step (fixed 1):
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Can we do better than O(n*N)?



Interacting Nucleic Acid Strands - Base Pairing Probabilities

case 0: strand nick is on 5’ side
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15 step (fixed 1):

Can we do better than O(n*N)?

Observations when comparing Y7, | against ¥%:
® “left” contribution stays the same
® “right” contribution includes Q;; instead of Oy
® one more j to account for (j =)



Interacting Nucleic Acid Strands - Base Pairing Probabilities

case 0: strand nick is on 5’ side
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15 step (fixed 1):

Can we do better than O(n*N)?

Observations when comparing Y7, | against ¥%:
® “left” contribution stays the same (pre-corhpute and re-use!)
® “right” contribution includes Q;; instead of Oy
® one more j to account for (j =)



Interacting Nucleic Acid Strands - Base Pairing Probabilities

case 0: strand nick is on 5’ side
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2"d step (pre-compute “left” part of Yi}):
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* “left” part (Yf;-') delimited by w(s) and j is independent of k and !

* re-use ¥ to compute ¥, for all



Interacting Nucleic Acid Strands - Base Pairing Probabilities

case 0: strand nick is on 5’ side
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2" step (pre-compute “left” part of Yi’l):
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Interacting Nucleic Acid Strands - Base Pairing Probabilities

case 0: strand nick is on 5’ side
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Complexity: O(n>N) time and additional O(nN) memory



Interacting Nucleic Acid Strands - Base Pairing Probabilities

case 0: strand nick is on 5’ side
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Complexity: O(n>N) time and additional O(nN) memory



Interacting Nucleic Acid Strands - Base Pairing Probabilities

case 1: strand nick is on 3’ side
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Interacting Nucleic Acid Strands - Base Pairing Probabilities

case 1: strand nick is on 3’ side
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Using similar algorithmic transformations as for 07,



Interacting Nucleic Acid Strands - Base Pairing Probabilities

case 1: strand nick is on 3’ side
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Using similar algorithmic transformations as for 07,




Interacting Nucleic Acid Strands - Base Pairing Probabilities

case 1: strand nick is on 3’ side
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Interacting Nucleic Acid Strands - Base Pairing Probabilities

case 1: strand nick is on 3’ side
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Using similar algorithmic transformations as for 07,
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Total effort for all O, : O(n*N) time using additional O(rN) memory



Runtime and Memory Consumption
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Conclusion

overhead of “nicked” loops is negligible

all p; can indeed be computed in O(|T1|»?) time
implementation available as RNAmultifold*

50 — 65x faster, 7x less memory than NUPACK 3.2.2 (per x)

full constraints support, e.g. to restrict state space or include
experimental probing data (SHAPE, etc.)

intramolecular G-Quadruplex

Outlook

automatically compute over all # and complexs of size N
add MFE, Boltzmann sampling, and suboptimal enumeration
include ligand binding support, e.g. SSB proteins

add concentration dependency

re-use (parts of) DP tables for different ©

4ViennaRNA Package 2.5.0alpha
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