
Efficient Computation of
Base-Pairing Probabilities in

Multi-Strand RNA Folding

Ronny Lorenz
ronny@tbi.univie.ac.at

University of Vienna, Theoretical Biochemistry Group (TBI)

Valletta, Malta, February 24th 2020



RNA Secondary Structures

RNAs fold hierarchical (A)→ (B)→ (C)

Secondary Structure (B):
• Set of nested base pairs
• Captures majority of stabilizing interactions
• Many thermodynamic properties can be predicted efficiently
• Very good prediction accuracy for small RNAs
• Accuracy drops to 40%-70% for longer sequences



RNA Secondary Structures - Loops vs. Base Pairs
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• secondary structures s can be uniquely decomposed into loops L
• stabilizing energy contributions (mostly) from stacked base pairs
• destabilizing contributions from unpaired bases in loops
• each loop L is assigned a free energy contribution EL

1

E(s)≈∑
L∈s

EL

1Turner, DH & Mathews, DH (2009). NNDB: The nearest neighbor parameter
database for predicting stability of nucleic acid secondary structure., Nucleic Acids
Research 38, D280-D282



RNA Secondary Structures - Statistical Thermodynamics

p(F) ∝ e−
E(F)
RT

Most probable structure:

MFE = min
s

E(s)

Partition Function:
Q = ∑

s
e−

E(s)
RT

Probability of a structure:

p(s) =
e−E(s)/RT

Q

Probability of Base Pair (k, l):

pk,l =
1
Q ∑

s|(k,l)∈s
e−

E(s)
RT



RNA Secondary Structures - Prediction

Dynamic Programming (DP) algorithm2

= |

2Nussinov, R & Pieczenik, G & Griggs, JR and Kleitman, DJ (1978). Algorithms for
Loop Matchings., SIAM J. Appl. Math., 35(1), 68-82
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RNA Secondary Structures - Prediction

Dynamic Programming (DP) algorithm2 3
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2Zuker M and Stiegler P (1981). Optimal computer folding of large RNA sequences
using thermodynamics and auxiliary information., Nucleic Acids Res, 9(1):133-148

3McCaskill JS (1990). The equilibrium partition function and base pair binding
probabilities for RNA secondary structure., Biopolymers, 29(6-7):1105-1119



RNA Secondary Structures - Prediction

Dynamic Programming (DP) algorithm
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Qi,j = Qi+1,j + ∑
i<u≤j

QB
i,uQu+1,j

QB
i,j = e−

H(i,j)
RT + ∑

i<k<l<j
e−

I(i,j,k,l)
RT QB

k,l + e−
a+b
RT ∑

i<u<j
QM

i+1,uQM1

u+1,j−1

QM
i,j = ∑

i≤u<j
e−

(u−i)c+b
RT QB

u,j + e−
b

RT ∑
i<u<j

QM
i,uQB

u+1,j + e−
c

RT QM
i,j−1

QM1

i,j = e−
b

RT QB
i,j + e−

c
RT QM1

i,j−1

Asymptotic complexity: O(n3) time and O(n2) memory



Multiple Interacting Nucleic Acid Strands2

Straight-forward extension of single sequence case
• consider complexes of N strands, i.e. one connected component
• restrict state space to intermolecular base pairs w/o crossings
• concatenate all strands (n = n1 +n2 + . . .+nN)
• prohibit strand nicks in “regular” loops
• treat cases with nicks as “external” loops w/ additional rule
• process all non-cyclic permutations π of strand concatenations
• correct for overcounting of symmetric cases

2Dirks, RM, Bois, JS, Schaeffer, JM, Winfree, E, and Pierce, NA (2007).
Thermodynamic analysis of interacting nucleic acid strands., SIAM Rev., 49:65–88.
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Interacting Nucleic Acid Strands - Base Pairing Probabilities

For single strand case (DP algorithm with O(n3) time, O(n2) memory):

pk,l =
1
Q ∑

s|(k,l)∈s
e−

E(s)
RT

=
1
Q

QB
k,lQ̂k,l, with

Q̂k,l = Q̄k,l︸︷︷︸
not enclosed by any bp

+ Q̆k,l︸︷︷︸
enclosed by bp



Interacting Nucleic Acid Strands - Base Pairing Probabilities

For single strand case (DP algorithm with O(n3) time, O(n2) memory):

pk,l =
1
Q ∑

s|(k,l)∈s
e−

E(s)
RT

=
1
Q

QB
k,lQ̂k,l, with

Q̂k,l = Q̄k,l︸︷︷︸
not enclosed by any bp

+ Q̆k,l︸︷︷︸
enclosed by bp

For complexes of N strands:

pk,l = ∑
π

w(π)pk,l[π]

=
1
Q ∑

π

Q̂k,l[π]QB
k,l[π], with

Q̂k,l[π] = Q̄k,l[π]︸ ︷︷ ︸
not enclosed by any bp

+ Q̆k,l[π]︸ ︷︷ ︸
enclosed by bp

+ Q̈k,l[π]︸ ︷︷ ︸
enclosed by bp w/ nick in loop

What is the asymptotic complexity to compute Q̈k,l[π]?
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Additional case for nicked loops (for particular π):

Q̈k,l = Q̈5′
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k,l

Computing all Q̈k,l by considering all enclosing pairs (i, j) and N−1
strand nicks seems to require O(n4N) operations
• Dirks et al., 2007:

“. . . equilibrium probability of each intrastrand and interstrand base pair . . . can be
calculated by backtracking through the partition function algorithm . . . applying a
particular algorithmic transformation at each step”

• Wolfe et al., 2017:
“. . . the equilibrium base-pairing properties . . . must be calculated for each
complex j ∈Ψ using Θ(|φj|3) dynamic programs.” (here, |φj| ≡ n)



Interacting Nucleic Acid Strands - Base Pairing Probabilities

Additional case for nicked loops (for particular π):

Q̈k,l = Q̈5′
k,l + Q̈3′

k,l

Computing all Q̈k,l by considering all enclosing pairs (i, j) and N−1
strand nicks seems to require O(n4N) operations
• Dirks et al., 2007:

“. . . equilibrium probability of each intrastrand and interstrand base pair . . . can be
calculated by backtracking through the partition function algorithm . . . applying a
particular algorithmic transformation at each step”

• Wolfe et al., 2017:
“. . . the equilibrium base-pairing properties . . . must be calculated for each
complex j ∈Ψ using Θ(|φj|3) dynamic programs.” (here, |φj| ≡ n)

Still, no reference to the algorithm, so how to achive that?



Interacting Nucleic Acid Strands - Base Pairing Probabilities

case 0: strand nick is on 5’ side

Q̈5′
k,l = ∑

1≤i<k
l<j≤n

Q̂i,jQl+1,j−1× ∑
s|i≤ω(s)<k

Qi+1,ω(s)Qω(s)+1,k−1

Apply Dynamic Programming paradigm:
• Trade computation time against memory consumption3

• Extract parts that are computed redundantly for different Q̈5′
k,l

3Similar to McCaskill, JS (1990). The equilibrium partition function and base pair
binding probabilities for RNA secondary structure., Biopolymers, 29:1105-1119.



Interacting Nucleic Acid Strands - Base Pairing Probabilities

case 0: strand nick is on 5’ side

1st step (fixed l):

|

• pre-compute “enclosed” part Y5′
s,l up to ω(s)

• re-use Y5′
s,l for all k



Interacting Nucleic Acid Strands - Base Pairing Probabilities

case 0: strand nick is on 5’ side

1st step (fixed l):

|

Q̈5′
k,l = Y5′

σ(k−1),l + ∑
s|ω(s)<k

Qω(s)+1,k−1Y5′
s,l (indep. of i and j)

Y5′
s,l = ∑

j>l
Ql+1,j−1×

(
Q̂ω(s),j + ∑

i<ω(s)
Q̂i,jQi+1,ω(s)

)
(indep. of k)
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Observations when comparing Y5′
s,l−1 against Y5′

s,l:
• “left” contribution stays the same
• “right” contribution includes Ql,j instead of Ql+1,j

• one more j to account for (j = l)
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case 0: strand nick is on 5’ side

1st step (fixed l):

|

Can we do better than O(n3N)?

Observations when comparing Y5′
s,l−1 against Y5′

s,l:
• “left” contribution stays the same (pre-compute and re-use!)
• “right” contribution includes Ql,j instead of Ql+1,j

• one more j to account for (j = l)



Interacting Nucleic Acid Strands - Base Pairing Probabilities

case 0: strand nick is on 5’ side

2nd step (pre-compute “left” part of Y5′
s,l):

|

• “left” part (Y5′′
s,j ) delimited by ω(s) and j is independent of k and l

• re-use Y5′′
s,j to compute Y5′

s,l for all l



Interacting Nucleic Acid Strands - Base Pairing Probabilities

case 0: strand nick is on 5’ side

2nd step (pre-compute “left” part of Y5′
s,l):

|

Y5′
s,l = Y5′′

s,l+1 + ∑
j>l+1

Ql+1,j−1 ·Y5′′
s,j (indep. of i and k)

Y5′′
s,j = Q̂ω(s),j + ∑

i<ω(s)
Q̂i,j ·Qi+1,ω(s) (indep. of k and l)



Interacting Nucleic Acid Strands - Base Pairing Probabilities

case 0: strand nick is on 5’ side

Finally:

|

|

Complexity: O(n2N) time and additional O(nN) memory
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case 0: strand nick is on 5’ side

Finally:

Q̈5′
k,l = Y5′

σ(k−1),l + ∑
s|ω(s)<k

Qω(s)+1,k−1Y5′
s,l

Y5′
s,l = Y5′′

s,l+1 + ∑
j>l+1

Ql+1,j−1 ·Y5′′
s,j

Y5′′
s,j = Q̂ω(s),j + ∑

i<ω(s)
Q̂i,j ·Qi+1,ω(s)

Complexity: O(n2N) time and additional O(nN) memory



Interacting Nucleic Acid Strands - Base Pairing Probabilities

case 1: strand nick is on 3’ side
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case 1: strand nick is on 3’ side

Using similar algorithmic transformations as for Q̈5′
k,l

|
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Interacting Nucleic Acid Strands - Base Pairing Probabilities

case 1: strand nick is on 3’ side

Using similar algorithmic transformations as for Q̈5′
k,l

Q̈3′
k,l = Y3′′

σ(l+1),k + ∑
s|α(s)>l+1

Ql+1,α(s)−1Y3′′
s,k

Y3′′
s,k = ∑

i<k
Qi+1,k−1Y3′

s,i

Y3′
s,i = Q̂i,α(s)+ ∑

j>α(s)
Q̂i,jQα(s),j−1



Interacting Nucleic Acid Strands - Base Pairing Probabilities

case 1: strand nick is on 3’ side

Using similar algorithmic transformations as for Q̈5′
k,l

Q̈3′
k,l = Y3′′

σ(l+1),k + ∑
s|α(s)>l+1

Ql+1,α(s)−1Y3′′
s,k

Y3′′
s,k = ∑

i<k
Qi+1,k−1Y3′

s,i

Y3′
s,i = Q̂i,α(s)+ ∑

j>α(s)
Q̂i,jQα(s),j−1

Total effort for all Q̈k,l : O(n2N) time using additional O(nN) memory



Runtime and Memory Consumption
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Conclusion

• overhead of “nicked” loops is negligible
• all pk,l can indeed be computed in O(|Π|n3) time
• implementation available as RNAmultifold4

• 50−65× faster, 7× less memory than NUPACK 3.2.2 (per π)
• full constraints support, e.g. to restrict state space or include

experimental probing data (SHAPE, etc.)
• intramolecular G-Quadruplex

Outlook
• automatically compute over all π and complexs of size N
• add MFE, Boltzmann sampling, and suboptimal enumeration
• include ligand binding support, e.g. SSB proteins
• add concentration dependency
• re-use (parts of) DP tables for different π

4ViennaRNA Package 2.5.0alpha
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