Coarse grained RNA folding kinetics

Ronny Lorenz ronny@tbi.univie.ac.at

Institute for Theoretical Chemistry University of Vienna

Vienna, Austria, May 5, 2010

Why are we interested in this?

- RNAs with (long term stable) metastable structure states
- · different functions coupled by change in conformation
- examples: RNA switches (thermometers, riboswitches, ...)

Arising questions:

- Population of conformations towards equilibrium given initial population density (fast, slow, via longterm stable intermediates, ...)
- Influence of cotranscriptional folding
- Influence of temperature
- ...

RNA folding as a Markov process

• State space

 $S = \{ s | s \text{ is secondary structure for the sequence} \}$

Neighborhood relation

$$\mathcal{N}(s_i, s_j) = \left\{ egin{array}{cc} \mathrm{true} & \mathrm{if} \ d_{BP}(s_i, s_j) == 1 \\ \mathrm{false} & \mathrm{otherwise.} \end{array}
ight.$$

• Transition rates $\mathbf{R} = (r_{ij})$

$$r_{ij} = \left\{ egin{array}{cc} f(s_i,s_j) & ext{if } \mathcal{N}(s_i,s_j) \ 0 & ext{otherwise.} \end{array}
ight.$$

• $\vec{p}(0)\ldots$ population density of all states at time 0

The master equation

$$rac{d}{dt}ec{p}(t) = \mathbf{R}ec{p}(t) \quad ext{with formal solution} \quad ec{p}(t) = e^{t\cdot\mathbf{R}}\cdotec{p}(0).$$

But nature spoils things for us:

- number of states grows exponentially with sequence length
- matrix exponential exceeds computability
- direct computation of master equation becomes infeasible even for small RNA sequences

Solution: Coarse graining of the state space!

- Partition the state space into macrostates
- compute effective transition rates between the partitions
- · solve master equation for the smaller problem

How to construct the macrostates ...and compute their transition rates?

The flooding algorithm, gradient basins and barrier trees¹

- energy sorted list of structure states
- identification of all local minima
- · identification of minimal saddle points connecting them
- · assigning each structure to its respective gradient basin

Limited to RNA molecules no longer than some 100 nt

¹Flamm et al. 2002

Gradient basin transition rates²

Estimation of gradient basin rates along the barrier tree:

$$r_{\beta\alpha} = e^{-rac{E_{lphaeta}-G_{lpha}}{kT}}$$

with:

 $\begin{array}{lll} E_{\alpha\beta} & \dots & \text{energy of saddle connecting state } \alpha \text{ and } \beta \\ G_{\alpha} & = & -kT \cdot \ln Q_{\alpha} \\ Q_{\alpha} & = & \sum_{i \in \alpha} e^{-\frac{E_i}{kT}} \end{array}$

Small example with unfolded chain as initial state

How to circumvent exhaustive enumerations?

- Sampling of secondary structures according their Boltzmann probability
- Sort samples into the macro states
- Estimate partition functions from samples
- Estimate transition rates

Sampling may not explore the state space sufficiently!

MFE representatives wrt. two reference structures³

³Lorenz et al. 2009

MFE representatives wrt. two reference structures

Simulating folding dynamics becomes easier with prior knowledge

- MFE structure is most probable in equilibrium (1st reference)
- sometimes a metastable state is known (2nd reference)
- partitioning into distance classes (κ, λ -neighborhoods) wrt. two reference structures
- MFEs and partition functions can be computed in $\mathcal{O}(n^7)$
- computable for sequence up to 500 nt on modern machines
- Boltzmann sampling from each κ, λ -neighborhood

How to obtain the rate matrix $\mathbf{R} = (r_{xy})$?

Approximation of the macro rates by Boltzmann sampling from each distance class S_{α} :

$$r_{\beta\alpha} \approx \frac{1}{|S_{\alpha}|} \sum_{\mathbf{x} \in S_{\alpha}} \sum_{\mathbf{y} \in \beta, \mathcal{N}(\mathbf{x}, \mathbf{y})} k_{\mathbf{y}\mathbf{x}}$$

with:

$$k_{yx} = \begin{cases} e^{-\frac{E(y)-E(x)}{kT}} & \text{if } E(x) < E(y) \\ 1 & \text{otherwise.} \end{cases}$$

- detailed balance must not be effected by sampling errors
- sample size of 1000 per macro state proved sufficient for the examples tested

Small example with unfolded chain as initial state

Small example with unfolded chain as initial state

To summarize

- prior knowledge can ease computational effort
- Boltzmann sampling may not explore important parts of the structure space
- sampling from distance classes implicitely explores more structural diversity
- significantly longer RNAs can be analyzed
- method used may also work for other partitionings (*RNAshapes*, etc.)

Thanks to:

Christoph Flamm Christian Höner zu Siederdissen Ivo Hofacker

...and You!

This work has been funded, in part, by the Austrian GEN-AU projects "bioinformatics integration network III" and "non coding RNA".