Constraints in RNA Secondary structure prediction

Ronny Lorenz ronny@bioinf.uni-leipzig.de

> Bioinformatik University of Leipzig

Leipzig, Germany, April 14, 2014

RNA Secondary structure prediction

Secondary structures can be uniquely decomposed into loops

RNA Secondary structure prediction

- The free energy of a secondary structure is the sum of the free energy of the loops its composed of
- · Loop energies depend on loop type, loop size and sequence
- Energy parameters are measured experimentally or extrapolated by mathematical models

RNA Secondary structure prediction

What happens during secondary structure prediction:

- · decomposition scheme is applied to a sequence
- underlying energy model assign contributions to each decomposition
- algorithm finds e.g. an optimal structure (MFE) or adds up Boltzmann factors (PF)

What happens during secondary structure prediction:

- · decomposition scheme is applied to a sequence
- underlying energy model assign contributions to each decomposition
- algorithm finds e.g. an optimal structure (MFE) or adds up Boltzmann factors (PF)

But:

- · the energy model is not perfect
- experiment (e.g. SHAPE) may suggest differently to a prediction
- bound molecules (proteins, small ligands, etc.) prohibit certain structure elements and/or induce change in free energy

What happens during secondary structure prediction:

- · decomposition scheme is applied to a sequence
- underlying energy model assign contributions to each decomposition
- algorithm finds e.g. an optimal structure (MFE) or adds up Boltzmann factors (PF)

But:

- · the energy model is not perfect
- experiment (e.g. SHAPE) may suggest differently to a prediction
- bound molecules (proteins, small ligands, etc.) prohibit certain structure elements and/or induce change in free energy

Secondary structure constraints:

- disallow certain parses of the decomposition scheme (Hard Constraints)
 Example: exclude a (set of) nucleotide(s) from base pairing
- alter the energy contributions of the model (Soft Constraints) Example: add a bonus/malus when a nucleotide is considered unpaired

Hard Constraints allows for cutting out/ inserting¹ points in the secondary structure energy landscape

¹circumvention of build-in constraints, e.g canonical base pairs

Hard Constraints allows for cutting out/ inserting¹ points in the secondary structure energy landscape

¹circumvention of build-in constraints, e.g canonical base pairs ²Gobierno de Álvaro Colom, Guatemala

Soft Constraints allow for shifting points in the landscape up or down

Soft Constraints allow for shifting points in the landscape up or down

Mount Rushmore 1925

Soft Constraints allow for shifting points in the landscape up or down

Mount Rushmore Today

Soft Constraints allow for shifting points in the landscape up or down

Mount Rushmore from the back

- · Selective 2'-hydroxyl acylation analyzed by primer extension
- · Yields nucleotide flexibility
- · Flexibility is inversely correlated to the pairing probability

Pseudo energy terms

• Degian et al. [2009] (stacked pairs)

 $\Delta G(i) = m * ln(reactivity[i] + 1) + b$

Pseudo energy terms

• Degian et al. [2009] (stacked pairs)

 $\Delta G(i) = m * ln(reactivity[i] + 1) + b$

Pseudo energy terms

· Zarringhalam et al. [2012] (unpaired bases and base pairs)

 $\Delta G(x,i) = \beta * |x-q_i|$

 $x \in [0(unpaired), 1(paired)]$

Pseudo energy terms

· Zarringhalam et al. [2012] (unpaired bases and base pairs)

 $\Delta G(x, i) = \beta * |x - q_i|$ $x \in [0(unpaired), 1(paired)]$

Pseudo energy terms

Washietl et al. [2012] (unpaired bases)
 Objective function

$$F(\vec{\epsilon}) = \sum_{i=1}^{n} \frac{\epsilon_i^2}{\tau^2} + \sum_{i=1}^{n} \frac{(p_i(\vec{\epsilon}) - q_i)^2}{\sigma^2} \to \min$$

Pseudo energy terms

Washietl et al. [2012] (unpaired bases)
 Objective function

$$F(\vec{\epsilon}) = \sum_{i=1}^{n} \frac{\epsilon_i^2}{\tau^2} + \sum_{i=1}^{n} \frac{(p_i(\vec{\epsilon}) - q_i)^2}{\sigma^2} \to min$$

Secondary structure constraints aware programs:

- UNAfold³ (hard)
- RNAstructure⁴ (hard, soft)
- RNApbfold⁵ (hard, soft)
- ViennaRNA Package v2.1.7⁶ (hard)
- ViennaRNA Package v2.2⁷ (hard, soft)

³Markham et al., 2008
⁴Reuter et al., 2010
⁵Washietl S. et al., 2012
⁶Hofacker et al., 1994, Lorenz et al. 2011
⁷not release yet

What is constraint folding - Examples RNAstructure Hard constraints:

DS:	
XA	# Nucleotides that will be double-stranded
-1	
SS:	
XB	# Nucleotides that will be single-stranded (unpaired)
-1	
Mod:	
XC	# Nucleotides accessible to chemical modification
-1	
Pairs:	
XD1 XD2	# Forced base pairs
-1 -1	
FMN:	
XE	# Nucleotides accessible to FMN cleavage
-1	
Forbids:	
XF1 XF2	# Prohibited base pairs
-1 -1	

RNAstructure SHAPE support:

9	-999	# No reactivity information
10	-999	
11	0.042816	<pre># normalized SHAPE reactivity</pre>
12	0	# also a valid SHAPE reactivity
13	0.15027	
14	0.16201	

What is constraint folding - Examples RNAfold Hard constraints (via pseudo dot-bracket string):

```
. # no constraint for this base
| # the corresponding base has to be paired
x # the base is unpaired
< # base i is paired with a base j>i
> # base i is paired with a base j<i
( ) # base i pairs base j
```

Example:

Where do current implementations apply structure constraints?

- · positions that are unpaired
- base pair stacks
- base pairs

Are the above implementations sufficient?

Where do current implementations apply structure constraints?

- · positions that are unpaired
- base pair stacks
- base pairs

Are the above implementations sufficient?

Of course NOT!

De novo design of theophylline sensing riboswitches Wachsmuth et al. [2013]

- in silico design, in vivo validation (E. coli)
- · theophylline aptamer upstream of a terminator hairpin
- · aptamer fold overlaps with terminator
- · ON switch upon presence of theophylline
- iterative design with RNAinverse and RNAfold

Mutational study

Bioinformatics analysis of the results

Cotranscriptional structure prediction and more:

- prediction of MFE and structure with ${\tt Cofold}^8$
- prediction of cotranscriptional folding with ${\tt kinwalker}^9$
- evaluation of free energies for 3bp-,4bp- and 5bp-seed of the terminators as a measure of how fast the terminator will form

Results:

- Cofold output is the same as RNAfold
- kinwalker predicts cotranscriptional traps in 4 cases RS8, RS10loop2, RS8CCDel, RS8CUDel
- use terminator formation barrier as parameter

RS8 aptamer fold terminator fold ^AC_{GGTAGT}^A G A cotranscriptional folding refold 12.2 kcal/mol

Hairpin formation barrier - RS8

Hairpin formation barrier

Hairpin seed stabilities

Conclusion

- pure thermodynamic design is insufficient
- terminator seed performance seems to matter
 Best design: Tetra-loops (GAAA, UUCG) and strong closing pairs
- · cotranscriptional effects have to be taken care of

Design must exclude hairpins attenuating the terminator

- · available terminator efficiency scores may be misleading
- · construct new measure that incorporates the above parameters

Conclusion

- pure thermodynamic design is insufficient
- terminator seed performance seems to matter
 Best design: Tetra-loops (GAAA, UUCG) and strong closing pairs
- · cotranscriptional effects have to be taken care of

Design must exclude hairpins attenuating the terminator

- available terminator efficiency scores may be misleading
- · construct new measure that incorporates the above parameters
- · What is the ligands influence on transcription and final fold?

Soft constraints for ligand - aptamer binding?!

Soft constraints for ligand - aptamer binding?!

Soft constraints for ligand - aptamer binding?!

Where do current implementations apply structure constraints?

- · positions that are unpaired
- base pair stacks
- base pairs

Are the above implementations sufficient?

Of course NOT!

We need some generalization of Hard-, and Soft-Constraints!
Generalized Hard constraints

Discriminate between the decomposition steps (loop types)

Do something about base pairs:

- (dis)allow particular base pair to appear in exterior-, hairpin-, interior-, multibranch-loops
- distinguish between enclosing and enclosed base pairs

② Do something with unpaired nucleotides:

specify whether or not a nucleotide may be unpaired in a distinguished loop type

Example: Base pair (i,j) has to pair but may only enclose a multiloop

Hard constraints can be expressed in terms of a boolean function

 $f(\vec{x}, d, data) = 0|1$

with nucleotide position vector \vec{x} , decomposition step *d* and some *data* structure for, e.g. precalculated stuff.

Generalized Soft constraints

Generalization similar to Hard constraints

- Discriminate between the decomposition steps
- ② Generalize to a pseudo-energy function

 $f(\vec{x}, d, data) = e$

to obtain bonus/malus for a particular decomposition step

Generalized Soft constraints

Generalization similar to Hard constraints

- Discriminate between the decomposition steps
- ② Generalize to a pseudo-energy function

 $f(\vec{x}, d, data) = e$

to obtain bonus/malus for a particular decomposition step

Example:

Generalized Constraints

What can we do now?

- Include contribtions for some ligand binding, e.g. when it binds to interior loop pocket with specific motif
- Include 2.5D structure motifs ¹⁰
- · apply funny distortions to the energy landscape

¹⁰given they are enclosed by two canonical base pairs and reasonable free energy/pseudo energy is available

An example application for generalized soft constraints RNA2Dfold

- classified dynamic programming approach
- · computes MFE or partition function for a set of distance classes
- a distance class is the set of all structures whith a specified base pair distance to two initially chosen reference structures E.g. with reference structures s_1 and s_2 , the distance class (5, 17) is populated with all structures *s* that fulfill

$$d_{BP}(s,s_1) = 5 \land d_{BP}(s,s_2) = 17$$

• underlying algorithm is rather slow in terms of asymptotic time complexity $O(N^7)$ and consumes a lot of memory $O(N^4)$

An example application for generalized soft constraints RNA2Dfold

- classified dynamic programming approach
- · computes MFE or partition function for a set of distance classes
- a distance class is the set of all structures whith a specified base pair distance to two initially chosen reference structures E.g. with reference structures s_1 and s_2 , the distance class (5, 17) is populated with all structures *s* that fulfill

$$d_{BP}(s,s_1) = 5 \land d_{BP}(s,s_2) = 17$$

- underlying algorithm is rather slow in terms of asymptotic time complexity $O(N^7)$ and consumes a lot of memory $O(N^4)$
- However, it can be used for e.g. barrier heuristics, metastable state detection or even for RNA folding kinetics computations (see my talk last year)

An example application for generalized soft constraints RNA2Dfold

- classified dynamic programming approach
- · computes MFE or partition function for a set of distance classes
- a distance class is the set of all structures whith a specified base pair distance to two initially chosen reference structures E.g. with reference structures s_1 and s_2 , the distance class (5, 17) is populated with all structures *s* that fulfill

$$d_{BP}(s,s_1) = 5 \wedge d_{BP}(s,s_2) = 17$$

- underlying algorithm is rather slow in terms of asymptotic time complexity $O(N^7)$ and consumes a lot of memory $O(N^4)$
- However, it can be used for e.g. barrier heuristics, metastable state detection or even for RNA folding kinetics computations (see my talk last year)

Question: Can this be done more efficiently?

Distortion of the energy landscape

Idea: Approximation of the RNA2Dfold distance classes

- Sample structures from the whole Boltzmann ensemble $O(n^3)$
- classify each sample according to two chosen reference structures
- · retrieve the MFE representative of the sampled distance classes
- compute partition function for each resulting distance classes

Drawback:

Sampling would only retrieve structure states from the lower portion of the energy landscape

Distortion of the energy landscape

Use generalized Soft constraints to favorize structures according to their distance to the chosen reference structures s_1 and s_2

$$Q = \sum_{s} \exp^{-E(s)/RT}$$

$$Q^{distorted} = \sum_{s} f(S, s, s_1, s_2) \cdot \exp^{-E(s)/RT}$$

$$= \sum_{s} x^{d_{BP}(s, s_1)} \cdot y^{d_{BP}(s, s_2)} \cdot \exp^{-E(s)/RT}$$

In pseudo energy notations with $x = \exp^{-x'/RT}$ and $y = \exp^{-y'/RT}$

$$Q^{distorted} = \sum_{s} \exp^{-(E(s)+x' \cdot d_{BP}(s,s_1)+y' \cdot d_{BP}(s,s_2))/RT}$$

Distortion the energy landscape

Now, choose x and y such that s_1 and s_2 and the MFE structure s_{MFE} are equally probable.

$${\sf P}(s) = rac{\exp^{-{E(s)}/{RT}}}{Q}$$

$$\begin{aligned} \exp^{-E(s_1)/RT} \cdot x^0 \cdot y^{d_{BP}(s_1,s_2)} &= \exp^{-E(s_2)/RT} \cdot x^{d_{BP}(s_1,s_2)} \cdot y^0 \\ \exp^{-E(s_1)/RT} \cdot x^0 \cdot y^{d_{BP}(s_1,s_2)} &= \exp^{-E(s_{MFE})/RT} \cdot x^{d_{BP}(s_1,s_{MFE})} \cdot y^{d_{BP}(s_2,s_{MFE})} \\ \exp^{-E(s_2)/RT} \cdot x^{d_{BP}(s_1,s_2)} \cdot y^0 &= \exp^{-E(s_{MFE})/RT} \cdot x^{d_{BP}(s_1,s_{MFE})} \cdot y^{d_{BP}(s_2,s_{MFE})} \end{aligned}$$

The above equations can now be solved for *x* and *y*

And then sample from this distorted landscape

Example 3: 5'-UTR in MS2¹¹ - RNA2Dfold

¹¹van Meerten et al. 2001

Example 3: 5'-UTR in MS2 - RNAsubopt -p 10²

Example 3: 5'-UTR in MS2 - RNAsubopt -p 10³

Example 3: 5'-UTR in MS2 - RNAsubopt -p 10⁴

Example 3: 5'-UTR in MS2 - RNAsubopt -p 10⁵

Example 3: 5'-UTR in MS2 - RNAsubopt -p 10⁶

Example 3: 5'-UTR in MS2 - RNA2Dfold

Example 3: 5'-UTR in MS2 - distortion 10²

Example 3: 5'-UTR in MS2 - distortion 10³

Example 3: 5'-UTR in MS2 - distortion 10⁴

Example 3: 5'-UTR in MS2 - distortion 10⁵

Example 3: 5'-UTR in MS2 - distortion 10⁶

Example 3: 5'-UTR in MS2 - RNA2Dfold

Example 2: SV11 RNA ¹² - RNA2Dfold

¹²Biebricher et al. 1982, Biebricher and Luce 1992

Example 2: SV11 RNA - RNAsubopt -p 10²

Example 2: SV11 RNA - RNAsubopt -p 10³

Example 2: SV11 RNA - RNAsubopt -p 10⁴

Example 2: SV11 RNA - RNAsubopt -p 10⁵

Example 2: SV11 RNA - RNAsubopt -p 10⁶

Example 2: SV11 RNA - RNA2Dfold

Example 2: SV11 RNA - distortion 10²

Example 2: SV11 RNA - distortion 10³

Example 2: SV11 RNA - distortion 104

Example 2: SV11 RNA - distortion 10⁵

Example 2: SV11 RNA - distortion 106

Example 2: SV11 RNA - RNA2Dfold

Under construction

- · RNAfold, RNAalifold already support generalized constraints
- · ViennaRNA Package v2.2 is scheduled for this summer!
- · RNAlib API is under change! Backward compatibility until v3
- · API will be easy to use:

```
/* obtain a data structure for folding */
vc = vrna_get_fold_compound(sequence, ...);
/* add hard constraints */
vrna_hc_add(vc, constraints_file, ...);
/* add SHAPE reactivity data and apply Mathews conversion
    for pseudo energies */
vrna_sc_add_mathews(vc, shape_data, ...);
/* fold it */
vrna_fold(vc);
```

· Scripting language support (Perl/Python) has fallen behind.

Under construction

- · RNAfold, RNAalifold already support generalized constraints
- · ViennaRNA Package v2.2 is scheduled for this summer!
- · RNAlib API is under change! Backward compatibility until v3
- · API will be easy to use:

```
/* obtain a data structure for folding */
vc = vrna_get_fold_compound(sequence, ...);
/* add hard constraints */
vrna_hc_add(vc, constraints_file, ...);
/* add SHAPE reactivity data and apply Mathews conversion
    for pseudo energies */
vrna_sc_add_mathews(vc, shape_data, ...);
/* fold it */
vrna_fold(vc);
```

• Scripting language support (Perl/Python) has fallen behind. Help with the SWIG interface files would be highly appreciated!

Thanks to

- Dominik Luntzer
- Manja Wachsmuth
- Sven Findeis
- Yann Ponty
- Mario Moerl
- Peter F Stadler
- Ivo L Hofacker

Thank You for your attention!