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Secondary structure energy landscape

Energy Landscape = {X,H, f}

X ... set of configurations (RNA secondary structures)
H ... topological structure on X (insert/delete bp)
f ... fitness/energy function with f : X — R (free energy)
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RNA secondary structure energy landscape and neighborhood

Folding path p between two secondary structures s; and s,

sequence of secondary structures where:
o p[0] = s
o pln] = s,
@ Vpli] : p[i + 1] is reachable from p[i] by applying one single move
from the moveset

direct paths:
on=1+ dBP(Sla 52)

-

Energy barrier between two secondary structures along a folding path

> B(p) = max E(pli]) — E(pl0])

@ finding the lowest energy barrier for any path is too costly in terms
of computational effort

@ heuristics are applied to obtain a good estimate of the lowest barrier
between s; and s,

-
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obtaining direct refolding paths

Flamm et al. approach

starting from s;
@ generate all neighbors that are one step closer to the target structure
Q keep the best m neighbors

Q if target structure is not reached, proceed with (1) for each of the m
neighbors
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Basics

Morgan Higgs et al. approach

@ let the current structure A be s;

@ find (i,j) in s, which has least incompatible pairs in A

© remove incompatible pairs in A and insert (ij)

Q if Al =5, go to (2)
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taking detours

Approach with detours
QletA=sand B=s
©Q generate best direct folding path py between A and B

Q find x other structures s, (mehspoint x)

@ generate best direct paths p,, from A to s,, and p,, from s, to B
@ get complete paths p,. = py, + px,

Q accept if B(px.) < B(pd)

@ if deeper iteration required continue from (2) to level p,, and py,

Q otherwise return p,_ with lowest barrier
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finding meshpoint structures

So, how to obtain meshpoint structures s, ?
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Non-deterministic Method(s)

Non-deterministic meshpoint generation
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Non-deterministic Method(s)

Monte Carlo with Metropolis rule

@ take s, that exhibits the barrier along the known path between s;
and s,

@ start a random walk from s

@ probability to move from structure s; to one of its neighbors s;:

1 exp PEGI-EE) if E(s;) < E(s;)
Plsi = 5j) = N { 1 else (1)
@ probability to reject the next move at all p,:
pr=1-> p(si—s) (2)
J
@ rejectionless selection of neighbor s; with probability
pals — 5) = < pls — 5) 3)
ri(Si — 5j) = “plsi— s
S R ) ,
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Non-deterministic Method(s)

Move penalties

@ walks backward on trajectory can be penalized

@ penalty contribution of 2 - kT added to free energy of previously
visited neighbor

Stop criterion

@ if all neighbors show heigher free energy than current state, MC
stops with probability

Pstop = 1 — e B-(E(s))—min; E(s;)) (4)

Simulated annealing

@ given a start and stop temperatures tgart, tstop and cooling rate r

@ acceptance probabilites of next states is altered according to falling
temperature of the system
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Deterministic meshpoint generation
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Deterministic Method

k,| - neighborhood of two RNA secondary structures

@ similar to approach of finding optimal k-neighbors (Freyhult et al.
2007)
a.k.a. RNAbor

@ optimal k-neighbor is optimal secondary structure s; with
dBP(Ska Starget) =k

® extension to second target structure Sgarget,

@ optimal k, I-neighbor is optimal secondary structure sy with
dBP(Sk/7 starget) = k and dBP(sk17 Stargetz) =1
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Deterministic Method

Finding all optimal k,| neighbors

dBP(Sl,Sg) = |51U52| = |51ﬂ52‘
sli,jl = {(p,g)es:i<p<q<j}
d(x,y) = 1,iff x =y (Kronecker function)

)‘1(i7j75) = dBP(S[i’j]’S[iv.j - 1])
Aa(iy],s) dep(s[i,Jj], s[i,u] Us[u+1,/])
)\3(i,j,P, q,S) = dBPES[iaj]a{(i)j)} US[p, q])
(

Mg (i,J, u,s) dep(s[i, j, {(i,))}Us[i+ 1, u]Us[u+1,j —1])
)\5(i7j7 U75) = dpp s[i,j],s[u,j])
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Deterministic Method

MFE Algorithm for finding all optimal k, /-neighbors

- Fitt,j k=210 d,51),1= A1 (indr52)
ik, = min min min min C; . + F, S o
e PQUS) wyH@=k—Ap(irf,t,51) wot@p=l—Ap(irjyu,sp) P @LW2 T TUFL),01,00
3(dpp (s1li,jl, {(i,)}) - 8(dgp(s2lis ], {01, )})) - H,J)s
. _min 3 C —xa(ilj —aa(ilj +Z(isj, Py q)
Cjwy = mind i<p<a<i P,q,k—A3(i,j,p,q,51),/ = X3(i.j,P.q,57) ’ }’
min min min M: +Ml . PN +a}
i<u<j wi+o1=k—Ag(i,j,u,s1) w2+&;2:/7>\4(/',j,u.52){ iHlu,wy,wr utl,j—1,01,07
jin {0 =Dt G xg (i) = As (i) + )
M; =  min min min min M; +C e e bV
LR <UL Wyt =kmAg(irfrt,51) w2+®2:17>\2(r’,j,u,52){ g+ Cutlj o @y 0}
Mij=1,k=X1(d51), 1= A1 Grissp) + €
Ml L . R
- min{ 1= 1k= A1 (i dos1), 1= A1 (ndis) €
Ciojokt b
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Recursion scheme for finding k, /-neighbors
| /\

Fijki T e
] i+l kk+1 j
Cij * = @ @
j uu+l j
Miyj'k'I _ /_q | m
i j i i-1j i uu+l j uu+l j

ikl
i
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Recursion scheme for finding k, /-neighbors
| /\

F.. =
Lk j i+l kk+1 j
Cijk * = @ @
j uu+l j
Miji ¢ > =
i j

b
D

T
5

ij, K,
i




finding meshpoint structures

000000 e@00000
Deterministic Method
Recursion scheme for finding k, /-neighbors

i uu+l

\_ /
wl"‘@l = k_>\2(i7j7 uvsl):k_dBP(Sl[ia.j]vsl[iv U]USI[U+1aj])
W2+&>2 = /7>\2(i7ja U752) = IdeP(SZ[i7j]752[i7 U]U52[U+1?j])

o
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Deterministic Method

put of RNA2Dfo

AGCCAGCCAGCCUGUAGCCCUCAAUAAAAGGCAGCUGCCUCUGCUCCCCAU
(@ Qo Cl(cncocazaocanas )))) D01 ) (-10.086)
free energy of ensemble .49 kcal/mol
(o e o Lo o000 20). <target 1>
50000066660000360006000680600a000 .. <target 2>
0 s .06 -10.06 ((.
[ 0 3 0. -9.76 -9.81 5
0 0 7 0. -8.50 -8.93
0.040f 0 9 0. =9.46 -9.51
0 0 7 0. -8.20 -8.76
[} 0 2 0. -9.20 .31
[} 0 6 0. -7.583 .88
0 0 6 0. -9.36 .51
1 0.025 0.58233897 0. -8.90 -9.23
3 0.000: 0.41464 0. -6.60 = 4
0.000: 25 0.5553132 0. -5.96 =EEE oooso
0.002f 55 0.5238012 0. -7.43 o 3
0 0.071 8 0.61152. 0 -9.56 < 6
2 0.00 1 0.31984. 0 = ilD) S 0
4 0.000 0.87030617 0. -6.60 = 9
0.0000C¢ 0 0. -4.03 = ()
0.00012. [} 207 0. -5.21 -5.95
0.03880! 0.81611104 0. -9.36 -9.49
1 0.09057879 0.78701893 0. -9.86 01
3 0.C [ 39827: 0. -6.30 4
5 0.00000 0 0.00000! -4.00 0
0.00003! 0 7 0.00003: -5.16 i
0.00000: 0 7 0.00000 -3.16 -3.91
0.00197: 0 71 0.00138260 -7.43 -7.65
0 0.01330700 O 5. 0.00311189 -7.93 .83
2 0.02565282 0.42313 0.01085451 -8.70 -9.23
4 0.00003311 0.35984: 0.00001191 -4.50 -5.13
2 4 0.00000004 0.65243047 0.00000003 -0.70
3 3 0.11005782 0.30707807 0.03379634 -9.40
3 5 0.00000000 0.52881538 0.00000000 9.40
4 4 0.04966769 0.18581086 0.00922879 -8 60
5 5 0.00140967 0.48817756 0.00068817
6 16 0.00000000 0.49744775 0.00000000 3 10
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Deterministic Method

Improving runtime properties of the algorithm

Time complexity

o finding all optimal k, /-neighbors with k < d; and | < ds:
O(dl . d2 0 n3)

o dy < MM(seq) + |sx|
o MM(seq) < n/2—1and |s| <n/2—-1
e O(n%)

@ finding all optimal k, /-neighbors with k < d; and | < db:
O(m-n*), m=1%-d-d

@ checkerboard like memory fill pattern

@ O(n*)
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Deterministic Method

Improving runtime properties of the algorithm

Observations

straight implementation results:
@ more than 3.5h runtime for sequence of length 100nt
@ more than 30GB RAM for sequences with length > 200nt
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Improving runtime properties of the algorithm

straight implementation results:

@ more than 3.5h runtime for sequence of length 100nt
@ more than 30GB RAM for sequences with length > 200nt

BUT: Energy arrays are filled by less than 2%
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Deterministic Method

Improving runtime properties of the algorithm

straight implementation results:

@ more than 3.5h runtime for sequence of length 100nt
@ more than 30GB RAM for sequences with length > 200nt

BUT: Energy arrays are filled by less than 2%

Improvements

@ operating with sparse matrices to lower runtime and memory
requirements

@ parallelization of recursive algorithm (parallel computation of
elements in diagonals of energy matrices)
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Deterministic Method

Improving runtime properties of the algorithm

Computation speed of the implementation
100000 T T T T
first implementation
sparse matrix approach
sparse matrix approach multithreaded --------
10000 3|
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length of sequence in nt




finding meshpoint structures
00000000000 e

Deterministic Method

Improving runtime properties of the algorithm

Speedup

random sequence of length 40 ———
random sequence of length 60
N random sequence of length 80
35 z random sequence of length 100
random sequence of length 120
random sequence of length 140
random sequence of length 160
random sequence of length 180 -~

speedup

Ly
011121314 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32
number of threads




Artificial RNA switches

bp-distance to alternative
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bp-distance to alternative
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0 5 10 15 20 25 30 o 5 10 15 20 25 30
bp-distance to mfe bp-distance to mfe

GGCUGUAUGGCAGCUGCCUCGUUAAGAGGUGAUUACUAUGUAGUC
et )20 (... )02 (. ))))) -15.40 (MFE structure)
CCCCCCCCCCen s e e )))))))))) -14.70 (alternative structure)

Height field contours: Gibbs free energy of the corresponding k, /-neighborhood

Left side: Trajectories of
(barrier tree generated path) 9.6 kcal/mol (—5.8 kcal/mol)
(direct folding path) 10.5 kcal/mol (—4.9 kcal/mol)

Right side: Trajectories of
(Monte carlo method (SA)) 9.8 kcal/mol (—5.8 kcal/mol)
(Deterministic method) 9.6 kcal /mol (—5.8 kcal/mol)



Artificial RNA switches

bp-distance to alternative

~
S

bp-distance to alternative

T ~f
0 5 10 15 20 25 30 o 5 10 15 20 25 30
bp-distance to mfe bp-distance to mfe

GGGCGCGGUUCGCCCUCCGCUAAAUGCGGAAGAUAAAUUGUGUCU
et )20 (... )02 (. ))))) -18.20 (MFE structure)
CCCCCCCCCCen s e e )))))))))) -17.70 (alternative structure)

Height field contours: Gibbs free energy of the corresponding k, /-neighborhood

Left side: Trajectories of
(barrier tree generated path) 10.7 kcal/mol (—7.5 kcal /mol)
(direct folding path) 13.33 kcal/mol (— — 4.87 kcal/mol)

Right side: Trajectories of
(Monte carlo method (SA)) 10.7 kcal/mol (—7.5 kcal/mol)
(Deterministic method) 10.7 kcal/mol (—7.5 kcal/mol)



add A-riboswitch

bp-distance to aptamer fold
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0 5 10 15 20 25 30 0 5 10 15 20 25 30
bp-distance to non-aptamer fold bp-distance to non-aptamer fold

GCUUCAUAUAAUCCUAAUGAUAUGGURUGGGAGUUUCUACCAAGAGCCUUAAACUCUUGAUUAUGAAGUCUGUCGCUUUAUCCGAAAUUUUAUAAAGAGAAGACUCAUGA

44444444444 CCCCCCa D) M) e CCCCCC e 2D)D)D) . CCCCC CCCCC (e e 00020000))20000)0)0000))
-36.03 (non-aptamer fold)
(OO e )INN. CCCCCCC e a022229)0) 42929000 (CCCL CCL (.. LONMNNMN ..

-35.32 (aptamer fold)

Height field contours: Gibbs free energy of the corresponding k, /-neighborhood
Left side: Trajectories of

(barrier tree generated path) 6.77 kcal/mol (—29.26 kcal /mol)

(direct folding path) 7.28 kcal/mol (—28.75 kcal/mol)

Right side: Trajectories of

(Monte carlo method (SA)) 6.77 kcal/mol (—29.26 kcal/mol)
(Deterministic method) 6.77 kcal/mol (—29.26 kcal/mol)
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