RNA Folding Algorithms with G-Quadruplexes

Ronny Lorenz¹, Stephan H. Bernhart², Fabian Externbrink², Jing Qin⁴, Christian Höner zu Siederdissen¹, Fabian Amman¹, Andrea Tanzer⁷, Ivo L. Hofacker^{1,3}, and Peter F. Stadler^{2,1,4,3,5,6}

¹ Department of Theoretical Chemistry University of Vienna, Austria
² Bioinformatics Group, Department of Computer Science, and Interdisciplinary Center for Bioinformatics, University of Leipzig, Germany
³ Center for non-coding RNA in Technology and Health, University of Copenhagen, Denmark
⁴ Max Planck Institute for Mathematics in the Sciences, Leipzig, Germany
⁵ Fraunhofer Institute for Cell Therapy and Immunology, Leipzig, Germany
⁶ Santa Fe, Iusta Fe, USA
⁷ Center for Genomic Regulation (CRG), Barcelona, Spain

Campo Grande, Brazil, August 15, 2012

What are G-Quadruplexes

- G-rich nucleic acid sequences can form stacked arrangements of G-quartets
- Stable local structure of 4 interconnected strands
- 2-5 quartet layers connected by 3 short loops
- Sequence pattern follows G_LN_{l1}G_LN_{l2}G_LN_{l3}G_L
- Several structure arrangements possible

Why are G-Quadruplexes

8 Hogsteen-Watson Crick hydrogen bonds

$\pi - orbital$ stacking between layers

Where are G-Quadruplexes

DNA:

- Human Telomers: Telomerase inhibition
- Promotor Regions: Modulation of gene transcription
- Elsewhere: Interference with protein function

RNA:

- Eukaryote genomes: Translation modulation
 - 5^\prime and 3^\prime UTR of mRNAs: post-transcriptional control of gene expression
 - exonic regions of mRNAs: ligand for several G-quadruplex recognizing proteins
 - ncRNAs: function modulation (e.g. hTERC)
 - Elsewhere: Heterodimers in telomeric regions (TERRA)
- Viral RNA genomes: Dimerization (e.g. in HIV)
- Bacterial genomes: Control of slippage transcription

Where are RNA G-Quadruplexes

Human Telomerase RNA Component (hTERC):

¹Adapted from Gros et al., ChemBioChem 2008

How to predict putativ stable G-quadruplexes from sequence data in silico?

RNA secondary structure prediction

Efficient DP algorithm with asymptotic time complexity of $O(n^3)$

RNA secondary structure prediction

Efficient DP algorithm with asymptotic time complexity of $O(n^3)$

Well parameterized tools available²

	Sensitivity	Specificity	MCC	F-measure
RNAfold 2.0	0.739	0.792	0.763	0.761
RNAfold 1.8.5	0.711	0.773	0.740	0.737
UNAFold	0.692	0.766	0.727	0.724
RNAStructure	0.715	0.781	0.745	0.742

²ViennaRNA Package 2.0, Lorenz et al. 2011

- · G-quads are local closed structures
- can be treated like other substructures
- potential G-quads can be searched for in linear time
- energy contributions computed via pre-processing step

- Energy \propto number of layers 1
- Energy \propto total linker length
- No effect of linker asymmetry or sequence composition

$$E(L, I) = a(L-1)g_0 + b\ln(I-2)$$

- Energy \propto number of layers 1
- Energy \propto total linker length
- No effect of linker asymmetry or sequence composition

$$E(L, I) = a(L-1)g_0 + b\ln(I-2)$$
 $a = -18.00, b = 12.00$

Integration into the ViennaRNA Package

- RNAfold MFE-, Centroid- and MEA-Structure, Base Pair Probabilities, Partition Function for Single Sequences
- RNAalifold MFE-, Centroid- and MEA-Structure, Base Pair Probabilities, Partition Function for Sequence Alignment
- RNAcofold MFE-Structure, Concentration Dependent Base Pair Probabilities, Partition Function for Dimers
- RNALfold Locally Stable Structure Prediction
- RNAplfold Locally Stable Structure Base Pair Probabilities, Probability for beeing unpaired (in progress)
- RNAsubopt Suboptimal Structure Prediction for Single Sequences and Sequence Dimers *(in progress)*

\$ RNAfold -p

Input string (upper or lower case); @ to quit ...,..1...,..2...,..3...,..4...,.5...,6...,..7.....8 GGCUGGUGAUUGGAAGGGAGGGGGGCGCAGCC length = 34 GGCUGGUGAUUGGAAGGGAGGGGGGCCAGCC ((((((......+++.++.++++))))) minimum free energy = -21.39 kcal/mol (((((((...............))))))) free energy of ensemble = -28.59 kcal/mol ((((((......+++.++.+++++))))) freequency of mfe structure in ensemble 8.38749e-06; ensemble diversity 0.17

Conserved G-Quadruplexes in Sequence Alignments

· Get putative G-Quadruplex sites (PGS) by scanning for

- Add 5' and 3' flanking region to each PGS
- Use these sequences to predict locally stable structures (RNALfold)
- · Count how many putative sites are confirmed
- Count all unique stable G-Quadruplexes

Conclusion and Outlook

- G-quadruplexes are important elements in gene regulation and cell life cycle
- Straight forward integration of G-tetrads into RNA folding DP recursions
- Implementation readily available and soon in main release of ViennaRNA Package (http://www.tbi.univie.ac.at/RNA)
- Genome wide scans for putative stable G-quadruplexes
- Only a very small amount (\approx 2%) of PGS lead to thermodynamically stable G-quadruplexes
- Intersection with annotation data and enrichment analysis
- Cation (*Na*⁺, *K*⁺, *Mg*²⁺) concentration dependancy
- RNA/RNA G-quadruplex Duplex structure prediction
- DNA G-quadruplex prediction
- RNA/DNA heterodimer G-quadruplexes

Conclusion and Outlook

- G-quadruplexes are important elements in gene regulation and cell life cycle
- Straight forward integration of G-tetrads into RNA folding DP recursions
- Implementation readily available and soon in main release of ViennaRNA Package (http://www.tbi.univie.ac.at/RNA)
- · Genome wide scans for putative stable G-quadruplexes
- Only a very small amount (\approx 2%) of PGS lead to thermodynamically stable G-quadruplexes
- Intersection with annotation data and enrichment analysis
- Cation (*Na*⁺, *K*⁺, *Mg*²⁺) concentration dependancy
- RNA/RNA G-quadruplex Duplex structure prediction
- DNA G-quadruplex prediction
- RNA/DNA heterodimer G-quadruplexes

Need for more (better) energy parameters

Thanks to

- Fabian Amman
- Stephan H. Bernhard
- Fabian Externbrink
- Ivo Hofacker
- Christian Höner zu Siederdissen
- Jing Qin
- Andrea Tanzer

Special Thanks to Nalvo Franco de Almeida Jr.

Thanks to

- Fabian Amman
- Stephan H. Bernhard
- Fabian Externbrink
- Ivo Hofacker
- Christian Höner zu Siederdissen
- Jing Qin
- Andrea Tanzer

Special Thanks to Nalvo Franco de Almeida Jr.

Thank You for your attention!

