
Analysis of cellular pedigrees -A working report

Katrin Braesel (research fellow) Ingmar Glauche (PhD student) Matthias Horn (Diploma student) Prof. M. Loeffler (Institute director) <u>Ronny Lorenz (trainee)</u> Christian Luecke (MD student) Dr. Ingo Roeder (group leader)

Project Group:

DYNAmical MOdeling of Tissue Stem Cell OrganizationInstitute for Medical Informatics, Statistics and EpidemiologyUniversity of Leipzig

Introduction

Materials & Methods

Results

Discussion

- Stem cells of a particular tissue are
- a (potentially heterogeneous) population of functionally undifferentiated cells
- capable of:
 - homing to an appropriate growth-environment
 - proliferation
 - production of large numbers of differentiated progeny
 - self-renewing or self-maintaining their population
 - regenerating functional tissue after injury

(Definition of tissue stem cells [Loeffler and Roeder, 2002])

Hematopoietic stem cells (HSC's)

- one kind of somatic tissue stem cells
- located mainly in the bone marrow
- precursors for all blood and immune cells
- most investigated tissue stem cell system (since 1960's)

UNIVERSITÄT LEIPZIG

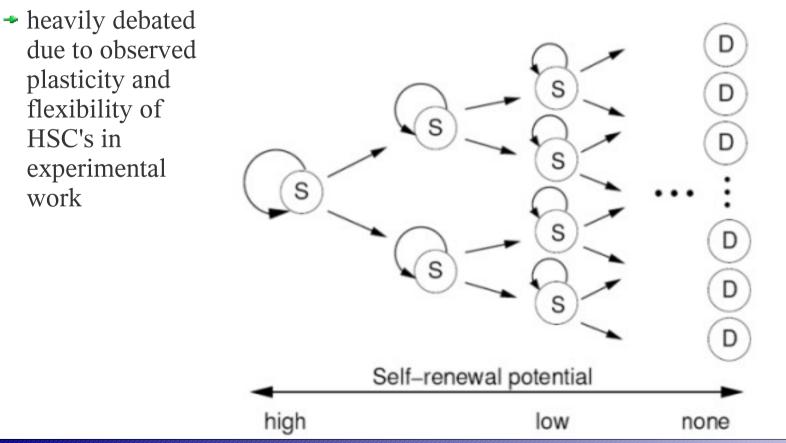
HSC differentiation scheme:

Introduction

Materials &

Methods

Results


Discussion

natural T lymphocyte killer cell neutrophile B lymphocyte basophile lymphoid eosinophile progenitor cell monocyte/ macrophage myeloid hematopoietic progenitor cell stem cell platelets erythrocytes

HSC within hierarchy:

- self-renewal potential of stem cells (S) is gradually lost
- differentiated cells (D) are assumed to have lost self-renewing potential completely
- Is there a regaining of self-renewing potential?

Introduction

UNIVERSITÄT LEIPZIG

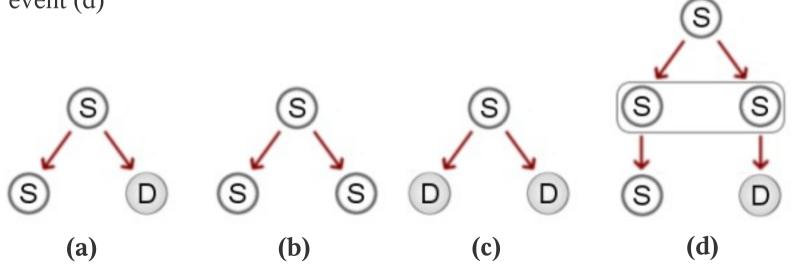
Materials & Methods

vicuivu3

Results

Discussion

Introduction


Materials & Methods

Results

Discussion

Suggested types of stem-cell division:

- asymmetric division into one stem cell (S) and one differentiated daughter cell (D) [Till et al., 1964; Ogawa and Mosmannn, 1985]
 – no self-renewing potential (a)
- symmetric divisions into two identical stem cells or two differentiated cells [Vogel et al., 1969; Loeffler and Grossmann, 1991]
 – change of rates for these two types induces growth/reproduction of
 - stem cell population (b) & (c)
- symmetric reproduction followed by an independent differentiation event (d)

Asymm. Division:

unequal distribution of cell-content during division

Symm. Division:

unequal cell-development after division

<u>Is asymmetric stem cell division necessary to explain asymmetric</u> <u>stem cell fate?</u>

- at the moment there is no evidence for asymmetric cell division in the hematopoietic system
- asymmetric stem cell fate often interpreted as asymmetric stem cell division
- different possibilities to define stem cell fate, with respect to:
 - lineage commitment
 - cycling activity
 - ✤ apoptosis

Introduction

Materials & Methods

Results

Discussion

Introduction

Materials &

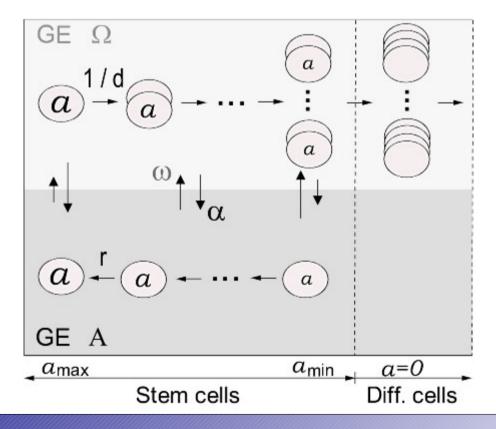
Methods

Results

Discussion

We took a closer look at the second type:

MAN AN


imise. Model - description

Type and properties of the model

- stochastic single cell based model
- cells are updated at specific timepoints according to predefined rules
- no assumption of unidirectional stem cell hierarchy necessary to explain self-renewal/self-maintenance and plasticity

In (more or less) detail:

- 2 growth environments GE
 A, GE Ω
- affinity *a* for attachment to GE A, indicates potential of stem cell
- proliferation only in GE Ω, fixed average turnover-time
- all cell divisions are symmetric

Introduction

Materials & Methods

Results Discussion

imise. <u>Simulation strategy</u>

Experimental data: (Punzel et al./Experimental Hematology 31 (2003))

- in-vitro culture of hematopoietic stem cells without stroma support
- observation time of 10 days
- ✤ 13 x 96 single cell observations every 12-24h on "96-well plates"

Model assumptions:

- parameter set for in-vitro mouse experiments determined in former DYNAMO-projects
- simulation time of 10 days
- ✤ average cell cycle turnover was set to 24h

Simulation procedure:

- → variable initial *a* value for each single cell
- 100 x 96 simulation runs
- calculation of asymmetric division rate (AD)

Introduction

Materials & Methods

Results Discussion

UNIVERSITÄT LEIPZIG

UNIVERSITÄT LEIPZIG

First simulation results:

experimental AD:	22.8%
------------------	-------

➡ simulated AD: 11.2%

Why is there such a difference?

- nothing known about experimental observed cell cycle times
- fewer cell divisions in experiment than 24h cct produces

Introduction

Materials & Methods

Results

Discussion

Results with 48h cct/10d simulation time:

experimental AD:	22.8%
------------------	-------

➡ simulated AD: 13.3%

Results with 60h cct/10d simulation time:

- → experimental AD 22.8%
- ✤ simulated AD: 14.1%

Results with 72h cct/10d simulation time:

- ✤ experimental AD: 22.8%
- ➡ simulated AD: 13.8%

Effect can not only depend on cell cycle time...

Introduction

Materials & Methods

Results

Discussion

Suggested solution:

- it has been shown, that stem cells are irritated for some time after they are placed in strange in-vitro conditions
- no cell cycle activity in this time
- we assume:
 - ✤ 4 days of delay to regard initial irritation
 - regular 24h of cell cycle time

Results with 24cct/6d simulation time:

- ◆ experimental AD: 22.8%
- ✤ in-silico produced AD: 20.9%

Introduction

Materials & Methods

Results

Discussion

UNIVERSITÄT LEIPZIG

imise. <u>Conclusion 1</u>

Summary:

- no special fitting of parameter set
- no need for asymmetric division of stem cells
- further simulation sets in progress

Problems:

- How is the distribution of cell cycle time?
- How long is the initial delay due to irritation?

Introduction

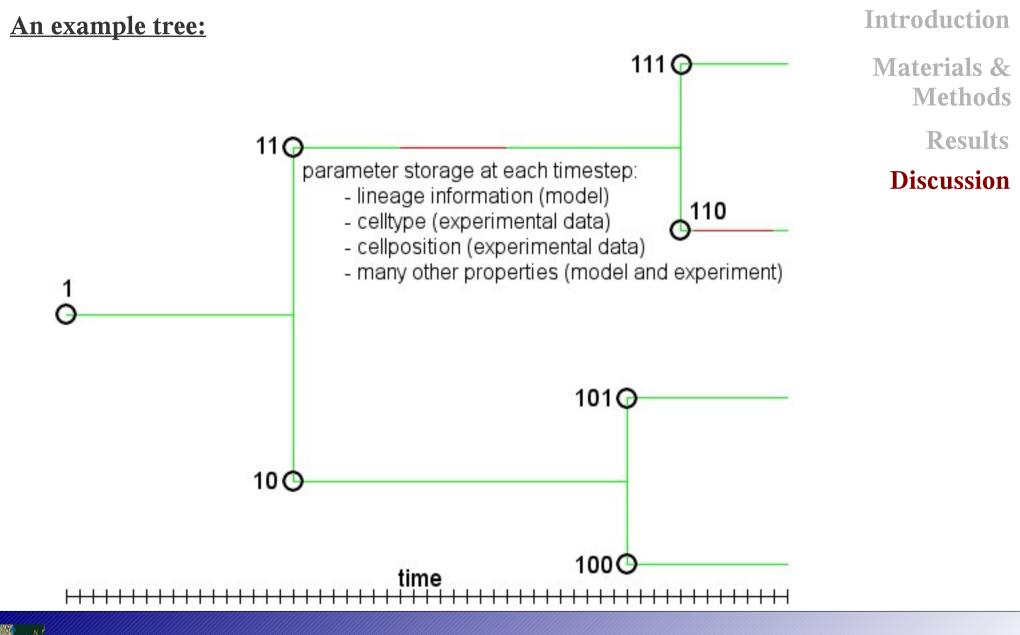
Materials & Methods

Results

Discussion

Analysis and Comparison with experimental cell tracking:	Introduction
 experimental based pedigrees from single cell tracking in progress (done by Timm Schroeder, GSF - National Research Center for Environment and Health) 	Materials & Methods
 not only for divisional history but for much more hematopoietic stem cell research topics 	Results Discussion

Open question:



Analysis and Comparison with experimental cell tracking:	Introduction
 experimental based pedigrees from single cell tracking in progress (done by Timm Schroeder, GSF - National Research Center for Environment and Health) 	Materials & Methods
 not only for divisional history but for much more hematopoietic stem cell research topics 	Results Discussion

Open question:

How to compare and analyse complex binary, weighted trees?

Comparison of experimental trees

Introduction

Materials & Methods

Results

Discussion

Comparison of experimental trees with in-silico trees

Open questions

What mechanisms play an important role in the model/biological system?

Central Question

imise.

How to compare trees?

- ...with respect to:
- distribution of cell cycle time
- occurrence of apoptosis
- lineage commitment
- velocity of the cells

We are open to any ideas!

***** ...

imise. Open questions

Comparison of experimental trees

Introduction

Materials & Methods

Results

Discussion

Comparison of experimental trees with in-silico trees

What mechanisms play an important role in the model/biological system?

Central Question

How to compare trees?

- ...with respect to:
- distribution of cell cycle time
- occurrence of apoptosis
- lineage commitment
- velocity of the cells

We are open to any ideas!

***** ...