▲□▶ ▲□▶ ▲□▶ ▲□▶ □ ののの

Projection of the RNA secondary structure space: The κ,λ - neighborhood

Ronny Lorenz ronny@tbi.univie.ac.at

Institute for Theoretical Chemistry University of Vienna

GCB, Halle, Germany, September 28, 2009

RNA		energy	landscapes
000			

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

1 RNA structures and energy landscapes

- Motivation
- RNA structures
- Loop decomposition
- Nearest neighbor energy model
- Secondary structure free energy landscape

RNA		energy	landscapes
000			

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ ののの

RNA structures and energy landscapes

- Motivation
- RNA structures
- Loop decomposition
- Nearest neighbor energy model
- Secondary structure free energy landscape

2 The κ, λ - neighborhood of two secondary structure states

- Representatives of the κ, λ neighborhood
- Complexity and implementation
- Application and interpretation
- Estimation of barrier heights using refolding paths

RNA		energy	landscapes

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ ののの

RNA structures and energy landscapes

- Motivation
- RNA structures
- Loop decomposition
- Nearest neighbor energy model
- Secondary structure free energy landscape

2 The κ, λ - neighborhood of two secondary structure states

- Representatives of the κ, λ neighborhood
- Complexity and implementation
- Application and interpretation
- Estimation of barrier heights using refolding paths

3 Conclusion

RNA structures and energy landscapes	The κ,λ - neighborhood	Conclusion	Acknowledgements
00000			
Motivation			

Gene regulation by RNA structure changes

- 5'-UTR element controlling translation
- metabolite sensors, (Riboswitch, A)
- temperature sensors, (RNA thermometer, B)

RNA structures and energy landscapes	The κ, λ - neighborhood	Conclusion	Acknowledgements
00000			
RNA structures			

Primary structure

5' - GCGCUCUGAUGAGGCCGCAAGGCCGAAACUGCCGCAAGGCAGUCAGCGC - 3'

Tertiary structure

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

Secondary structures can be uniquely decomposed into loops

▲ロト ▲舂 ト ▲ 臣 ト ▲ 臣 ト ○ 臣 - の Q ()~.

NVA structures and energy landscapes OOOOO Nearest neighbor energy model		Conclusion	Acknowledgements
	E (S)	$)=\sum_{L\in\mathcal{S}}E(L)$	

- The free energy of a secondary structure is the sum of the free energy of the loops its composed of
- Loop energies depend on loop type, loop size and sequence
- Energy parameters are measured experimentally or extrapolated by mathematical models

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

RNA structures and energy landscapes	The κ, λ - neighborhood	Conclusion	Acknowledgements
000000			
Nearest neighbor energy model			

 $\mathcal{O}(n^3)$ in time, $\mathcal{O}(n^2)$ in memory

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ ののの

RNA structures and energy landscapes ○○○○● Secondary structure free energy landscape

Conclusion

Acknowledgements

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

RNA free energy landscape

RNA structures and energy landscapes 000000

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Secondary structure free energy landscape

RNA free energy landscape

RNA structures and energy landscapes	The κ, λ - neighborhood	Conclusion
000000		
Secondary structure free energy landscape		

RNA structures and energy landscapes	The κ,λ - neighborhood	Conclusion	Acknowled
000000			
Secondary structure free energy landscape			

・ロト ・聞ト ・ヨト ・ヨト

æ

RNA structures and energy landscapes	The κ,λ - neighborhood	Conclusion	
00000			
Secondary structure free energy landscape			

RNA structures and energy landscapes	The κ,λ - neighborhood	Conclusion	
00000			
Secondary structure free energy landscape			

・ロト ・聞ト ・ヨト ・ヨト

- 2

RNA structures and energy landscapes	The κ, λ - neighborhood	Conclusion	Acknowled
00000			
Secondary structure free energy landscape			

・ロト ・聞ト ・ヨト ・ヨト

- 2

RNA structures and energy landscapes	The κ, λ - neighborhood	Conclusion	Acknowled
00000			
Secondary structure free energy landscape			

・ロト ・聞ト ・ヨト ・ヨト

- 2

RNA structures and energy landscapes	The κ, λ - neighborhood	Conclusion	Acknowledgem
00000			
Secondary structure free energy landscape			

Free energy landscape is a high-dimensional irregular space

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

RNA structures and energy landscapes	The κ,λ - neighborhood	Conclusion	Acknowledgeme
000000			
Secondary structure free energy landscape			

Does a projection into a low dimensional space with few states reveal insights of the high-dimensional irregular landscape?

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

RNA structures and energy landscapes	The κ, λ - neighborhood	Conclusion	Acknowledgements
	• 00 0000000000		
Representatives of the κ,λ - neighborhood			

κ,λ - neighborhood

- fixed reference structures s_1 and s_2
- s is a κ, λ neighbor $\Leftrightarrow d_{BP}(s, s_1) = \kappa \wedge d_{BP}(s, s_2) = \lambda$
- $\bullet\,$ partitioning of the landscape into κ,λ neighborhoods

RNA structures and energy landscapes	The κ, λ - neighborhood	Conclusion	Acknowledgements
	• 00 0000000000		
Representatives of the κ,λ - neighborhood			

κ,λ - neighborhood

- fixed reference structures s_1 and s_2
- s is a κ, λ neighbor $\Leftrightarrow d_{BP}(s, s_1) = \kappa \land d_{BP}(s, s_2) = \lambda$
- $\bullet\,$ partitioning of the landscape into κ,λ neighborhoods

Questions:

- What are the states with certain free energy (e.g. MFE)?
- What is the partition function?
- How many states?

RNA structures and energy landscapes	The κ, λ - neighborhood	Conclusion	Acknowledgements
	• 00 0000000000		
Representatives of the κ,λ - neighborhood			

κ,λ - neighborhood

- fixed reference structures s_1 and s_2
- s is a κ, λ neighbor $\Leftrightarrow d_{BP}(s, s_1) = \kappa \land d_{BP}(s, s_2) = \lambda$
- $\bullet\,$ partitioning of the landscape into κ,λ neighborhoods

Questions:

- What are the states with certain free energy (e.g. MFE)?
- What is the partition function?
- How many states?

Classified dynamic programming

- Density of states Cupal, J et al. (1996) Computer Science and Biology 96: 184-186
- RNAshapes Steffen, P et al. (2006) Bioinformatics 22(4): 500-503
- RNAbor Freyhult, E et al. (2007) Bioinformatics 23(16): 2054-2062

Representatives of the <i>v</i> , poighborhood			
00000	00000000000000		
RNA structures and energy landscapes	The κ, λ - neighborhood	Conclusion	Acknowledgements

Structure decomposition scheme for κ, λ -neighbors

$$\begin{split} F_{i,j}^{a,\lambda} &= \min \left\{ \begin{array}{l} F_{i,j}^{s-\delta_{i}^{-\delta_{i}^{*}(j),\lambda-\delta_{i}^{0}(j)}, \\ \min_{\substack{i \leq w < \omega_{1}+\omega_{1}=w-\delta_{i}^{0}(j,i), \\ \omega_{2}+\omega_{2}=\lambda-\delta_{i}^{0}(j,i)}} F_{i,u-1}^{\omega_{1},\omega_{2}} + C_{u,j}^{\omega_{1},\omega_{2}} \\ F_{i,j}^{a,\lambda} &= \min \left\{ \begin{array}{l} \Im(i,j,k,\lambda), \\ \min_{\substack{i < w < \omega_{1}+\omega_{1}=w-\delta_{i}^{0}(i,j,k), \\ wing \in V_{i}+\omega_{2}=w-\delta_{i}^{0}(i,j)}} \left\{ M_{i+1,u}^{\omega_{1},\omega_{2}} + M_{u+1,j-1}^{\omega_{1},\omega_{2}} + A_{i,j}^{\omega_{1},\omega_{2}} \\ M_{i,j}^{a,\lambda} &= \min \left\{ \begin{array}{l} M_{i,j}^{a-\delta_{i}^{0}(i,j-1),\lambda-\delta_{i}^{0}(i,j)} + c \\ \min_{i \leq w < 1} + C_{i-1}=w-\delta_{i}^{0}(i,j),\lambda-\delta_{i}^{0}(i,j),\lambda-\delta_{i}^{0}(i,j),\lambda-\delta_{i}^{0}(i,j,w)} + b \right\}, \\ \min_{i \leq w < 1} \left\{ (u-i) \cdot c + C_{u,j}^{w-\delta_{i}^{0}(i,j,w),\lambda-\delta_{i}^{0}(i,j,w)} + b \right\}, \\ \min_{i \leq w < 1} + C_{i-2}=\lambda-\delta_{i}^{0}(i,j),\lambda-\delta_{i}^{0}(i,j)} \\ \hat{M}_{i,j}^{a,\lambda} &= \min \left\{ \begin{array}{l} C_{i,j}^{e,\lambda} + b \\ M_{i,j}^{e,-\delta_{i}^{0}(i,j),\lambda-\delta_{i}^{0}(i,j)} + c, \end{array} \right. \end{array} \right. \end{split} \right.$$

with:

$$\begin{array}{rcl} \delta^{z}_{1}(i,j) &= d_{\mathrm{BP}}(s_{x}[i,j],s_{x}[i,j-1]) \\ \delta^{z}_{2}(i,j,u) &= d_{\mathrm{BP}}(s_{x}[i,j],s_{x}[i,u-1] \cup s_{x}[u,j]) \\ \delta^{z}_{3}(i,j,p,q) &= d_{\mathrm{BP}}(s_{x}[i,j],\{(i,j)\} \cup s_{x}[p,q]) \\ \delta^{z}_{4}(i,j,u) &= d_{\mathrm{BP}}(s_{x}[i,j],\{(i,j)\} \cup s_{x}[u+1,u] \cup s_{x}[u+1,j-1]] \\ \delta^{z}_{3}(i,j,u) &= d_{\mathrm{BP}}(s_{x}[i,j],s_{x}[u,j]) \end{array}$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Representatives of the κ, λ - neighborhood			
	000000000000000000000000000000000000000		
RNA structures and energy landscapes	The κ, λ - neighborhood	Conclusion	Acknowledgement

Structure decomposition scheme for κ, λ -neighbors

▲□▶ ▲□▶ ▲臣▶ ★臣▶ 三臣 - のへで

Representatives of the κ, λ - neighborhood			
	000000000000000000000000000000000000000		
RNA structures and energy landscapes	The κ, λ - neighborhood	Conclusion	Acknowledgement

Structure decomposition scheme for κ, λ -neighbors

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

RNA structures and energy landscapes	The κ, λ - neighborhood	Conclusion	Acknowledgements
	000000000000000		
Representatives of the κ, λ - neighborhood			

Example: multi-loop decomposition

$$\begin{split} \omega_1 + \hat{\omega}_1 &= \kappa - d_{\mathrm{BP}}(s_1[i,j],s_1[i,u] \cup s_1[u+1,j]) \\ \omega_2 + \hat{\omega}_2 &= \lambda - d_{\mathrm{BP}}(s_2[i,j],s_2[i,u] \cup s_2[u+1,j]) \end{split}$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

Complexity and implementation			
	000000000000		
RNA structures and energy landscapes	The κ, λ - neighborhood	Conclusion	Acknowledgements

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Complexity

- $\mathcal{O}(n^7)$ in time
- $\mathcal{O}(n^4)$ in memory

RNA structures and energy landscapes	The κ, λ - neighborhood	Conclusion	Acknowledgements
	000000000000		
Complexity and implementation			

- $\mathcal{O}(n^7)$ in time • $\mathcal{O}(n^4)$ in mass
- $\mathcal{O}(n^4)$ in memory

Implementation

Naïve:

- more than 3.5h runtime for sequence of length 100nt
- more than 30GB RAM for sequences with length > 200nt

RNA structures and energy landscapes	The κ, λ - neighborhood	Conclusion	Acknowledgements
	000000000000		
Complexity and implementation			

\$\mathcal{O}(n^7)\$ in time
\$\mathcal{O}(n^4)\$ in memory

Implementation

Naïve:

- more than 3.5h runtime for sequence of length 100nt
- more than 30GB RAM for sequences with length > 200nt

This does not look promising :(

RNA structures and energy landscapes	The κ, λ - neighborhood	Conclusion	Acknowledgements
	000000000000		
Complexity and implementation			

\$\mathcal{O}(n^7)\$ in time
\$\mathcal{O}(n^4)\$ in memory

Implementation

Naïve:

- more than 3.5h runtime for sequence of length 100nt
- more than 30GB RAM for sequences with length > 200nt

BUT: Sparse matrices (less than 2% entries with values $\neq \infty$)

RNA structures and energy landscapes	The κ, λ - neighborhood	Conclusion	Acknowledgements
	000000000000		
Complexity and implementation			

- $\mathcal{O}(n^7)$ in time
- $\mathcal{O}(n^4)$ in memory

Implementation

Naïve:

- more than 3.5h runtime for sequence of length 100nt
- more than 30GB RAM for sequences with length > 200nt

RNA2Dfold

• exploits sparse matrices and parallel computation of diagonal elements with OpenMP

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

- MFE computation
- Partition function computation
- Boltzmann sampling

RNA structures and energy landscapes	The κ, λ - neighborhood	Conclusion	Acknowledgements
	000000000000		
Complexity and implementation			

Runtime RNA2Dfold

Runtimes for dual quad-core Intel[®] Xeon[®] E5450 @3.00GHz, 32GB RAM

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Complexity and implementation			
	000000000000		
RNA structures and energy landscapes	The κ, λ - neighborhood	Conclusion	Acknowledgements

Memory requirements

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

RNA structures and energy landscapes 000000 The κ, λ - neighborhood

Conclusion

Acknowledgements

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● ○ ● ● ● ●

Application and interpretation

Output of RNA2Dfold

GGGCGG (((((. ((((.	CGGU	JUCGCCCUCCGCU	JAAAUGCGGAAGAUAAAU	JUGUGUCU))))) (-18.))))) (-18.	20) <mfe 20) <ref< th=""><th>> 1></th><th></th></ref<></mfe 	> 1>	
for converse of a second a second sec							
k 0 1 2 2 3 3 4 4 4 5 5 5	1 15 14 15 12 14 11 15 10 12 14	$\begin{array}{c} P(nb) \\ 0.16350376 \\ 0.13710099 \\ 0.03870938 \\ 0.00043959 \\ 0.00549664 \\ 0.00050399 \\ 0.00055642 \\ 0.0001334 \\ 0.00001102 \\ 0.01691144 \\ 0.00001727 \\ 0.00001727 \end{array}$	P(struct in nb) 1.00000000 0.52985725 0.31496460 0.78124709 0.31651335 0.30274973 0.32315097 0.1920423 0.74654403 0.99736503 0.21163330 0.24052012	P(structure) 0.16350396 0.07264404 0.01219207 0.00034343 0.00015258 0.00012973 0.00002261 0.000002261 0.0000022 0.01686584 0.00000365 0.00000430	E_min -18.20 -17.70 -16.60 -14.40 -15.40 -13.90 -13.80 -12.10 -16.80 -11.60 -11.70	E-gibbs -18.20 -18.09 -17.31 -14.55 -16.11 -14.64 -14.70 -13.82 -12.28 -12.28 -12.56 -12.58	structure
20 20 21 21 21 21 21 21	11 13 15 6 8 10 12 14	0.00001320 0.00459594 0.18615427 0.0000000 0.00000000 0.000000041 0.00003261 0.00907139	0.20013684 0.37854283 0.39023612 0.11205340 0.27124082 0.34501497 0.25218449 0.36701076	0.00000264 0.00173976 0.07264404 0.0000000 0.0000000 0.00000014 0.00000822 0.00332929	-11.40 -15.40 -17.70 -6.10 -5.90 -9.60 -12.10 -15.80	-12.39 -16.00 -18.28 -7.45 -6.70 -10.26 -12.95 -16.42	: ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
27 28 28 29 29 30 31	16 13 15 14 16 15	$\dot{0}.00000011$ 0.0000063 0.0000000 0.0000000 0.0000000 0.00000015 0.00000005	0.42869149 0.51237067 0.31993086 0.16525529 0.50536309 0.43442428 0.31578542	0.0000005 0.0000032 0.0000000 0.00000004 0.0000000 0.00000006 0.00000006	-8.90 -10.10 -5.60 -8.80 -3.80 -9.10 -5.80	-9.42 -10.51 -6.30 -9.91 -4.22 -9.61 -6.51	: ((((((((((((((((((((((((((((((((((((

RNA structures and energy landscapes 000000

The κ , λ - neighborhood

Conclusion

Acknowledgements

Application and interpretation

Output of RNA2Dfold

GGGCGCGG (((((GUUCGCCCUCCGCI	JAAAUGCGGAAGAUAAAU	JUGUGUCU))))) (-18.))))) (-18.	20) <mfe 20) <ref< th=""><th>> 1></th><th></th></ref<></mfe 	> 1>		
free end	(0.00) <ref 2=""></ref>						
	P (nb) 0.16350376 0.13710099 0.03870938 0.00043959 0.00549664 0.00055642 0.00013334 0.00001102 0.01691144 0.00001727 0.00001787	P(struct in nb) 1.00000000 0.52985725 0.31496460 0.31651335 0.30274973 0.32315097 0.19204623 0.74654403 0.29730503 0.24052012	P(structure) 0.16350396 0.07264404 0.01219207 0.00034343 0.00015258 0.00012973 0.00002261 0.00002261 0.0000022 0.01686584 0.00000365	E.min -18.20 -17.70 -16.60 -14.40 -15.40 -13.90 -13.80 -12.10 -16.80 -11.60 -11.70	E-gibbs -18.20 -18.09 -17.31 -14.55 -16.11 -14.64 -14.64 -13.82 -12.28 -16.80 -12.56 -12.58	<pre>structure {</pre>	
: 20 11 20 13 20 15 21 6 21 6 21 8 21 10 21 12 21 14	0.0001320 0.0459594 0.18615427 0.0000000 0.0000000 0.00000041 0.0000261 0.00907139	0.20013684 0.37854283 0.39023612 0.11205340 0.27124082 0.34501497 0.25218449 0.36701076	0.00000264 0.00173976 0.07264404 0.0000000 0.0000000 0.00000014 0.00000822 0.00332929	-11.40 -15.40 -17.70 -6.10 -5.90 -9.60 -12.10 -15.80	-12.39 -16.00 -18.28 -7.45 -6.70 -10.26 -12.95 -16.42	: (((((((((,))))))))))))))))))))))))))	
 27 16 28 13 28 15 29 14 29 16 30 15 31 16	0.00000011 0.00000063 0.00000000 0.00000024 0.00000000 0.00000005 0.00000005	0.42869149 0.51237067 0.31993086 0.16525529 0.50536309 0.43442428 0.31578542	0.0000005 0.0000032 0.0000000 0.00000004 0.00000000 0.00000000	- -8.90 -10.10 -5.60 -8.80 -3.80 -9.10 -5.80	-9.42 -10.51 -6.30 -9.91 -4.22 -9.61 -6.51	: : : : : : : : : : : : : :	

MFE structure vs. alternative structure

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

The κ , λ - neighborhood

Conclusion

◆□▶ ◆□▶ ◆□▶ ◆□▶ ●□

Acknowledgements

Application and interpretation

The κ , λ - neighborhood

Conclusion

(日)、(四)、(E)、(E)、(E)

Acknowledgements

Application and interpretation

lower bound of barrier \geq 10.0 kcal/mol

Estimation of barrier heights using refolding paths

Finding (energetically) best transition path

- exact solution for small sequences (exhaustive enumeration)
- several heuristics, e.g. Morgan & Higgs '98, Flamm et al. '01
- consider only shortest (direct) paths in most cases
- direct paths (NP hard even for Nussinov energy model)¹
- indirect paths (NP hard)¹

Direct paths

- perform poorly when states have great distance
- stabilizing base pairs are neglected
- may estimate barrier too high

¹ Maňuch, J et al. (2009) Proc. of the 15th Intl. Meeting on DNA Computing and Molecular Programming

Estimation of barrier heights using refolding paths

Finding (energetically) best transition path

- exact solution for small sequences (exhaustive enumeration)
- several heuristics, e.g. Morgan & Higgs '98, Flamm et al. '01
- consider only shortest (direct) paths in most cases
- direct paths (NP hard even for Nussinov energy model)¹
- indirect paths (NP hard)¹

Direct paths

- perform poorly when states have great distance
- stabilizing base pairs are neglected
- may estimate barrier too high

How to exploit the vast amount of general paths?

¹ Maňuch, J et al. (2009) Proc. of the 15th Intl. Meeting on DNA Computing and Molecular Programming

Estimation of barrier heights using refolding paths

Constructing general- from direct-refolding paths Pathfinder

- **Q** generate best direct folding path p_d between s_1 and s_2
- **2** find x other structures s_{x_m} (meshpoint x)
- **(a)** generate best direct paths p_{x_1} from s_1 to s_{x_m} and p_{x_2} from s_{x_m} to s_2
- concatenate paths $p_x = p_{x_1} + p_{x_2}$
- accept if $B(p_x) < B(p_d)$
- **(**) if more refinement required, level p_{x_1} and p_{x_2} the same way
- otherwise return p_x with lowest barrier

Constructing general- from direct-refolding paths Pathfinder

- **Q** generate best direct folding path p_d between s_1 and s_2
- **(a)** find x other structures s_{x_m} (meshpoint x, κ , λ MFE representatives)
- **③** generate best direct paths p_{x_1} from s_1 to s_{x_m} and p_{x_2} from s_{x_m} to s_2
- concatenate paths $p_x = p_{x_1} + p_{x_2}$
- accept if $B(p_x) < B(p_d)$
- **(**) if more refinement required, level p_{x_1} and p_{x_2} the same way
- otherwise return p_x with lowest barrier

RNA structures and energy landscapes

The κ, λ - neighborhood

Conclusion

Acknowledgements

Estimation of barrier heights using refolding paths

Embedding refolding paths

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 = のへで

The κ, λ - neighborhood

Conclusion

Acknowledgements

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Estimation of barrier heights using refolding paths

indirect path obtained by the Pathfinder algorithm saddle energy = -7.5 kcal/molbarrier estimate = 10.7 kcal/mol

The κ , λ - neighborhood

Conclusion

Acknowledgements

Estimation of barrier heights using refolding paths

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ○ □ ○ ○ ○

Conclusion

- 2D projection of high-dimensional folding space into κ, λ -neighborhoods
- Produces qualitative pictures of the energy landscape
- RNA2Dfold is fast enough to treat most biologically interesting RNAs by exploiting sparseness and parallelization
- Starting point for the recognition of RNA switches or for coarse grained folding simulations.
- Intermediate node suggestion for indirect folding path construction

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ ののの

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Thanks to:

Stephan Bernhart Christoph Flamm Andreas Gruber Christian Höner zu Siederdissen Ivo Hofacker Andrea Tanzer

...and You!

RNA2Dfold α -release available: http://www.tbi.univie.ac.at/~ronny/RNA/

This work has been funded, in part, by the Austrian GEN-AU projects "bioinformatics integration network III" and "non coding RNA".