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Motivation

Gene regulation by RNA structure changes
@ 5'-UTR element controlling translation

@ metabolite sensors, (Riboswitch, A)
o temperature sensors, (RNA thermometer, B)
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adapted from Henkin, T (2008) Genes & Development 22:3383-3390
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RNA structures

Primary structure
5' - GCGCUCUGAUGAGGCCGCAAGGCCGAAACUGCCGCAAGGCAGUCAGCGC - 3'

Tertiary structure
Secondary structure
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Loop decomposition

Secondary structures can be uniquely decomposed into loops
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Nearest neighbor energy model
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@ The free energy of a secondary structure is the sum of the free
energy of the loops its composed of

@ Loop energies depend on loop type, loop size and sequence

@ Energy parameters are measured experimentally or extrapolated by
mathematical models
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Nearest neighbor energy model

MFE dynamic programming algorithm
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O(n®) in time, O(n?) in memory
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Secondary structure free energy landscape

RNA free energy landscape
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Secondary structure free energy landscape

RNA free energy landscape
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Secondary structure free energy landscape

RNA free energy landscape

LN O,
b d b4
[ i)
™
LS Lo o b =)
O 18y ™%
o0 0 o
HoH H :, uf o
[ o. © o
o0 <O, .
TP ™ Move Set . t;  CostFunction
Lo, N
(O TR S S = >
ﬁ I i insert/delete bp H o, E(s)

u\; o Folding Landscape




RNA structures and energy landscapes
L J

Secondary structure free energy landscape
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Secondary structure free energy landscape

RNA free energy landscape
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Secondary structure free energy landscape

RNA free energy landscape
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RNA free energy landscape
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Secondary structure free energy landscape

RNA free energy landscape
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Free energy landscape is a high-dimensional irregular space
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Secondary structure free energy landscape

RNA free energy landscape
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Does a projection into a low dimensional space with few states reveal
insights of the high-dimensional irregular landscape?
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Representatives of the ., A - neighborhood

K, A - neighborhood
@ fixed reference structures s; and s,

@ sis a Kk, \ - neighbor < dgp(s,s1) = k A dgp(s,s2) = A

@ partitioning of the landscape into x, A - neighborhoods
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Representatives of the ., A - neighborhood
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K, A - neighborhood
fixed reference structures s; and s,

©

sis a k, A - neighbor < dgp(s,s1) = k A dgp(s, 52) = A

©

partitioning of the landscape into k, A - neighborhoods

Questions:

©

What are the states with certain free energy (e.g. MFE)?
What is the partition function?

[

©

How many states?
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Representatives of the ., A - neighborhood

K, A - neighborhood
@ fixed reference structures s; and s,

@ sis a Kk, \ - neighbor < dgp(s,s1) = k A dgp(s,s2) = A

@ partitioning of the landscape into x, A - neighborhoods

Questions:
@ What are the states with certain free energy (e.g. MFE)?
@ What is the partition function?
@ How many states?

Classified dynamic programming
? Density of states cupal, J et al. (1996) Computer Science and Biology 96: 184-186
@ RNAsha PES Steffen, P et al. (2006) Bioinformatics 22(4): 500-503

@ RNAbor Freyhult, E et al. (2007) Bioinformatics 23(16): 2054-2062



The <

, A - neighborhood

oeo

Representatives of the ., A - neighborhood

Structure decomposition scheme for x, \-neighbors
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Representatives of the ., A - neighborhood

Structure decomposition scheme for x, \-neighbors
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Representatives of the ., A - neighborhood

Structure decomposition scheme for x, \-neighbors
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The k, X - neighborhood
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Example: multi-loop decomposition
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Complexity
@ O(n") in time

@ O(n*) in memory
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@ more than 3.5h runtime for sequence of length 100nt
@ more than 30GB RAM for sequences with length > 200nt
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Complexity and implementation

Complexity
@ O(n") in time

@ O(n*) in memory

Implementation
Naive:
@ more than 3.5h runtime for sequence of length 100nt
@ more than 30GB RAM for sequences with length > 200nt

This does not look promising :(



The k, X - neighborhood
®00

Complexity and implementation

Complexity
@ O(n") in time

@ O(n*) in memory

Implementation
Naive:
@ more than 3.5h runtime for sequence of length 100nt
@ more than 30GB RAM for sequences with length > 200nt

BUT: Sparse matrices (less than 2% entries with values # o)
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Complexity and implementation

Complexity
@ O(n") in time

@ O(n*) in memory

Implementation
Naive:
@ more than 3.5h runtime for sequence of length 100nt

@ more than 30GB RAM for sequences with length > 200nt

RNA2Dfold
@ exploits sparse matrices and parallel computation of diagonal
elements with OpenMP
@ MFE computation
@ Partition function computation

@ Boltzmann sampling
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Complexity and implementation

Runtime RNA2Dfold

T
10° | naive approach ———

SMA
SMA (8 threads) --------

runtime in seconds

102 I I I L L
40 100 200 300 400 500 600

length of sequence in nucleotides

Runtimes for dual quad-core Intel® Xeon® E5450 ©3.00GHz, 32GB RAM



Complexity and implementation

memory in bytes
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Memory requirements

| 'RNA2Dfold —— |

40

100 200 300
length of sequence in nucleotides
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Application and interpretation

Output of RNA2Dfold

.20) <mfe>
.20) <ref 1>
.00) <ref 2>
free energy of ensemble = -19.32 kcal/mol
k 1 P(nb) P(struct in mb) P(structure) i E.gibbs
0 15 0.16350376 1.00000000 0.16350396 -1 -18.20
1 14 0.13710 5 7 0. 04
2 13 0.03870 0.31496460 0. 07
2 15 0.00043 0.78124709 0. 4
3 12 0.00549 0.31651335 0. 7
3 14 0.00050. 0.30274973 0. 5
4 11 0.00055 0.23315097 0. 7
4 13 0.00013 0.19204623 0.
4 15 0.00001102 0.74654403 0
5 10 0.01691144 0.99730503 0
5 12 0.00001727 0.21163330 0
5 14 0.00001787 0.24052012 .
20 11 0.00001320 0.20013684 0.00000264
20 13 0.00459594 0.37854283 0.00173976
21 6  0.00000000 0.11205340 0.00000000
21 0.00000000 0.27124082 0.00000000
21 10 0.00000041 0.34501497 0.00000014
21 12 0.00003261 0.25218449 0.00000822
21 14 0.00907139 0.36701076 0.00332929
27 16 0.00000011 0.42869149 0.00000005  -8.90  -9.42
28 13 0.00000063 0.51237067 0.00000032  -10.10 -10.51
28 15 0.00000000 0.3199308 0.00000000  -5.60  -6.30
29 14 0.00000024 0.1652552 0.00000004  -8.80 -9.91
29 16 0.00000000 0.5053630 0.00000000  -3.80  -4.22
30 15 0.00000015 0.4344242 0.00000006  -9.10  -9.61
31 16 0.00000000 0.3157854: 0.00000000 -5.80 -6.51




Application and interpretation

Height map of x, A-neighborhood MFEs

25
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bp-distance to alternative struct

T
0 5 10 15 20 25 30
bp-distance to mfe struct

MFE structure vs. alternative structure



Application and interpretation
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bp-distance to alternative struct

T
0 5 10 15 20 25 30
bp-distance to mfe struct

Direct path
best saddle energy > —4.9 kcal/mol
lower bound of barrier > 13.3 kcal/mol
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Application and interpretation

30

Estimating barrier height
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54

bp-distance to alternative struct

T
0 5 10 15 20 25 30
bp-distance to mfe struct

Best path in k, A-neighborhood (Ford-Bellman algorithm)
best saddle energy > —8.2 kcal/mol
lower bound of barrier > 10.0 kcal/mol
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Estimation of barrier heights using refolding paths
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Finding (energetically) best transition path

exact solution for small sequences (exhaustive enumeration)
several heuristics, e.g. Morgan & Higgs '98, Flamm et al. '01
consider only shortest (direct) paths in most cases

direct paths (NP hard even for Nussinov energy model)?
indirect paths (NP hard)!

Direct paths

perform poorly when states have great distance

@ stabilizing base pairs are neglected

may estimate barrier too high

1 Matiuch, J et al. (2009) Proc. of the 15th Intl. Meeting on DNA Computing and Molecular Programming
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Estimation of barrier heights using refolding paths
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Finding (energetically) best transition path

exact solution for small sequences (exhaustive enumeration)
several heuristics, e.g. Morgan & Higgs '98, Flamm et al. '01
consider only shortest (direct) paths in most cases

direct paths (NP hard even for Nussinov energy model)?
indirect paths (NP hard)!

Direct paths

perform poorly when states have great distance

@ stabilizing base pairs are neglected

may estimate barrier too high

How to exploit the vast amount of general paths?

1 Matiuch, J et al. (2009) Proc. of the 15th Intl. Meeting on DNA Computing and Molecular Programming
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Estimation of barrier heights using refolding paths

Constructing general- from direct-refolding paths

Pathfinder
.
©—
AN .//'
e
\
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®

@ generate best direct folding path py between s; and s

Q find x other structures s, (meshpoint x)

© generate best direct paths p,, from s; to s, and py, from s, to s,
@ concatenate paths px = py, + Px,

Q accept if B(px) < B(pa)

@ if more refinement required, level p,, and p,, the same way

@ otherwise return p, with lowest barrier
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Estimation of barrier heights using refolding paths

Constructing general- from direct-refolding paths

Pathfinder
@
@ -
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@ generate best direct folding path py between s; and s

Q find x other structures s, (meshpoint x, x, A\ MFE representatives)
© generate best direct paths p,, from s; to s, and py, from s, to s,
@ concatenate paths px = py, + Px,

Q accept if B(px) < B(pa)

@ if more refinement required, level p,, and p,, the same way

@ otherwise return p, with lowest barrier
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Estimation of barrier heights using refolding paths

Embedding refolding paths

210°
110°

110°
110*

110°

number of secondary structures

110°
3|

distance to 1st reference
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Estimation of barrier heights using refolding paths

30

Embedding refolding paths

25

N
S

bp-distance to alternative struct
&
|

T
o 5 10 15 20 25 30
bp-distance to mfe struct

indirect path obtained by the Pathfinder algorithm
saddle energy —7.5 kcal /mol
barrier estimate = 10.7 kcal/mol



Estimation of barrier heights using refolding paths

Embedding refolding paths

bp-distance to alternative struct

25 30

best path computed by exhaustive enumeration
—7.5 kcal/mol
10.7 kcal/mol

saddle energy



Conclusion

Conclusion

©

2D projection of high-dimensional folding space into
K, A-neighborhoods

©

Produces qualitative pictures of the energy landscape

©

RNA2Dfold is fast enough to treat most biologically interesting
RNAs by exploiting sparseness and parallelization

©

Starting point for the recognition of RNA switches or for coarse
grained folding simulations.

©

Intermediate node suggestion for indirect folding path construction
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