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A B S T R A C T

RNAs play an important role in bioinformatic applications. Their ability to serve

not only as information carrier, but also to develop catalytic properties highlights

them in the set of organic macromolecules notably. As these catalytic properties

are closely related to the three-dimensional configuration (tertiary structure) of the

RNA molecule, the formation and prediction of this tertiary structure - a process

called folding - is a crucial bioinformatic problem. RNA folding is considered as a

hierarchical process, where a secondary structure precedes the tertiary structure,

whereas tertiary interactions are energetically weaker than those yielded by the

secondary structure. Generally, the secondary structure does not change when

tertiary interactions are formed. Because there are efficient methods for predicting

the secondary structure of an RNA molecule under certain conditions, but none

for the tertiary structure, the secondary structure is used as a first step for the

prediction of functional properties of the RNA molecule. However, most methods

for the analysis of secondary structure(s) are designed for linear RNAs exclusively.

As catalytic active circular RNA molecules occur in nature too, it is necessary

to extend these methods. Based on the scheme for a memory efficient extension

of previously existing methods for linear RNAs, suggested by the group of Ivo

Hofacker, four basic algorithms are introduced, extended and therefore made

accessible for circular RNA molecules within this work.

Z U S A M M E N FA S S U N G

In bioinformatischen Anwendungen spielen RNA Moleküle eine grosse Rolle.

Ihre Fähigkeit, nicht nur als Informationsträger für proteinkodierende Erbinfor-

mation zu dienen, sondern selbst katalytische Eigenschaften auszuprägen hebt

sie aus der Menge der organischen Makromoleküle besonders hervor. Da diese

katalytischen Eigenschaften sehr eng mit der dreidimensionalen Beschaffenheit

(Tertiärstruktur) des RNA Moleküls verknüpft sind, ist die Ausbildung bzw. die
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Vorhersage dieser Tertiärstruktur - ein Prozess der Faltung genannt wird - eine

wichtige bioinformatische Problemstellung. RNA Faltung wird als hierarchischer

Prozess betrachtet, bei dem eine Sekundärstruktur der Tertiärstruktur vorhergeht,

wobei die tertiären Interaktionen energetisch schwächer sind, als die durch die Se-

kundärstruktur hervorgebrachten. Im Allgemeinen erfährt die Sekundärstruktur

bei der Ausbildung der tertiären Interaktionen keine Änderung. Da es effiziente

Methoden gibt, um die Sekundärstruktur eines RNA Moleüls unter bestimmten

Bedingungen vorherzusagen, nicht jedoch für die Tertiärstruktur, wird die Se-

kundärstuktur als erster Schritt zur Vorhersage der funktionalen Eigenschaften

des RNA Moleküls herangezogen. Die meisten Methoden zu Untersuchung der

Sekundärstrutur(en) sind jedoch ausschliesslich für lineare RNAs konzipiert. Da

in der Natur aber auch katalytisch aktive zirkuläre RNA Moleküle vorkommen,

ist es wichtig, diese Methoden zu erweitern. Basierend auf einem Schema der

speichereffizienten Erweiterung bisher existierender Methoden für lineare RNAs,

vorgeschlagen von der Arbeitsgruppe um Ivo Hofacker, werden in dieser Ar-

beit vier grundlegende Algorithmen vorgestellt, erweitert und dadurch für die

Analyse von zirkulären RNA Molekülen zugänglich gemacht.
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There is a theory which states that
if ever anybody discovers exactly

what the Universe is for
and why it is here,

it will instantly disappear
and be replaced by something

even more bizarre and inexplicable.
There is another theory which states that

this has already happened.

— Douglas Adams [1]
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1
I N T R O D U C T I O N

1.1 motivation

Although most RNA molecules are linear, circular single stranded RNAs occur

in a few cases. A well known representative is a class of small plant pathogenic

RNAs, the so called viroids. Another example is the circular genome of the

Hepatitis delta virus (HDV) which contains a viroid-like domain. Other RNAs are

also known to be circular, e.g. spliced nuclear group I introns whose ability to

form circles seems to be a general property [44]. Even tRNA splicing products

in archaea have been observed to be circularized [50]. Starostina et al. found

circular box C/D RNAs in Pyrococcus furiosus, an archaeon [53], but circular

RNAs have also been reported in eukaryotes, e.g. a circular RNA replicon in yeast

[40]. Recent studies found exogenous linear RNAs circularized in wheat embryo

extract [36]. Even in RNA therapeutics, circular RNAs play an essential role as

shown by Umekage et al. who produced a circular streptavidin RNA aptamer

in vitro [59]. Referring to circular RNAs, the Subviral RNA Database [49] lists

more than 1300 circular viroid RNA genomes and hundreds of related objects.

Common to most of these small circular RNAs is that they do not contain any

protein coding regions. Viroids for example share common specific secondary

structure elements which are important for their replication and processing

activity, although they do not code for any protein [20]. They do not have any

encapsidation mechanism, do not require helper viruses and still are able to

replicate and spread throughout an infected plant [11, 71], causing devastating

diseases mediated solely by their secondary and therefore tertiary structure[4,

16, 19, 38, 55, 63]. Their replication, where viroids of the family Pospoviroidae or

viroid-like RNA (e. g. HDV) utilize DNA-dependant RNA Polymerase II (Pol II)

for an RNA-templated rolling circle RNA replication is especially unique, as Pol

II is known only for its ability to act on DNA templates. This has been of great

interest in the recent years [7, 21, 34, 70]. Viroids of the family Avsunviroidae
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2 introduction

instead use a nuclear-encoded chloroplast RNA Polymerase (NEP) [42]. These

RNAs posess efficient mechanisms for the precise cleavage of monomers from

oligomeric replication intermediates [9, 10, 25]. Therefore, most viroids require

a host factor but viroid-like satellite RNAs and one viroid (Avocado sunblotch

viroid (ASBVd)) are self-cleaving RNA enzymes. Investigating viroid and viroid-

like RNA secondary and tertiary structures and the role of their metastability

is essential for understanding the underlying mechanisms of their pathogenesis

and replication [35].

Since the RNA chain has a very large degree of freedom in bending and coiling

itself, even more than polypeptides allow, RNA tertiary structures are hard to

predict. Thus, known tertiary structures are experimentally determined in almost

all cases. Nevertheless, the interpretation of the biochemical function of an RNA

molecule can be based on a secondary structure predicted without the need of

a direct tertiary structure prediction. Secondary structures already cover the

major part of free energy of the fold by including base pairing and base stacking

energies.

When predicting secondary structures of viroids, the problem arises that most

of the RNA folding algorithms are designed for linear RNA molecules only.

Although extensions of them exist, e. g. the minimum free energy (MFE) algorithm

of Zuker and Stiegler [72] that treats linear RNAs as special cases of circular ones,

implemented in the mfold package, they result in an enormous additional cost

with respect to time and memory requirements. In 2005, Hofacker et al. [28]

presented a scheme of memory efficient folding algorithms for circular RNA secondary
structures. The application and implementation of this scheme to the existing

folding algorithms provided in the ViennaRNAPackage [27] opens the possiblity

to investigate such circular RNAs as well as linear ones according to the recent

needs for in silico predictions [51, 52].
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Figure 1: Viroid infections. (A) Symptoms of ASBVd on fruit. (Image taken from "2006
Florida Plant Disease Management Guide: Avocado (Persea americana)", Palmateer,
A.J. and Ploetz, R.C. and Harmon, P.F.) (B) Symptoms of CSVd infection on flowers
of chrysanthemum cv. Gillglow, showing yellow coloration of petals (on left)
compared with the healthy red bloom (on right) (Image taken by J. Dunez, France,
Bugwood.org) (C) PSTVd on potato; left to right: cv. Saco healthy, Saco infected,
cv. Kennebec healthy, Kennebec infected. (Image taken by USDA ARS Archive,
USDA Agricultural Research Service, USA, Bugwood.org) (D) Area with cadang-
cadang disease (CCCVd) showing trees in the early, medium and late stages of
the disease. Herbaceous monocotyledonous plants (Alpinia sp.) in foreground
growing in association with infected palms. (Image taken by M. Holderness, CAB
Interational, U.K., Bugwood.org)





2
B A C K G R O U N D

2.1 rna

Ribonucleic acids (RNAs) are one of the most important building blocks in living

cells and also the carriers of genetic information of some non living virulant

particles like viruses and viroids. RNA is a polymer chain- or ring-molecule,

consisting of an arrangement of four different nucleic acids, the ribonucleotides

5’-adenylic acid, 5’-guanylic acid, 5’-uridylic acid and 5’-cytidylic acid. Each ribonu-

cleotide monomer is composed of a ribose, a purine or pyrimidine base, and

one phosphate group. Monomers lacking the phosphate group are called nu-

cleosides, namely adenosine (A), uridine (U), cytidine (C) and guanosine (G),

where the purine bases adenine (A) and guanine (G) as well as the pyrimidine

bases cytosine (C) and uracil (U) are linked to the 1 ′ carbon atom of the ribose

molecule as depicted in Fig. 2. In the polymerized chain the phosphate group

interconnects the 3 ′ carbon of one nucleoside with the 5 ′ carbon of the next,

forming a phosphodiester bond and giving rise to the so called sugar-phosphate
backbone also referred just as phosphate backbone. Furthermore, such a polymer

chain has two free ends, labeled, accordingly to the open ribose binding sites for

further nucleotides, as 5 ′-end and 3 ′-end. The ring polymer, however, has no free

ends due to the connection of the first 5 ′ and the last 3 ′ carbon closing the ring.

primary structure The primary structure of an RNA molecule is the

sequence of ribonucleotides, which can be written down as a sequence of letters

A, G, C and U according to the succession of the different bases from the 5 ′- to its

3 ′-end. This sequence simplifies the molecule’s representation in a way to allow

easy exchange or storage in databases of even large primary structures. Typical

sequence lengths vary from very small polymers of micro RNA (miRNA) with

around 22 nucleotides up to some millions of nucleotides for large messenger

RNA (mRNA) gene transcripts.
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Figure 2: The nucleosides of an RNA molecule. Left ring molecule indicates the ribose
with labeled 5 ′ and 3 ′ end. Upper right parts of the molecules depict the purine
bases adenine (A) and guanine (G) and the pyrimidine bases cytosine (C) and
uracil (U) connected to the 1 ′ carbon of the ribose.
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secondary structure In contrast to deoxy-ribonucleic acid (DNA), which

most often occures as a double stranded helical molecule of two complementary

DNA strands, forming intermolecular Watson-Crick base pairs, RNA is found

as a single stranded molecule in most cases. The name Watson-Crick base pairs
dates back to the exploration of the double stranded helical structure of DNA

molecules by Watson and Crick [67] in 1953, who suggested that the four different

nucleotides in DNA molecules are intermolecularly linked by hydrogen bonds

between a pyrimidine and a purine base. Particularly A pairs with T, giving

rise to 2 hydrogen bonds and G pairs with C, giving rise to 3 hydrogen bonds.

These findings were also concurrent to those of the chemist E. Chargaff in the late

1940s [5], who investigated the relative quantities of A, T, C and G in extracted

(double stranded) DNA of ox, human, yeast and the avian tubercle bacilli (a

bacterium). His discoveries are well known as Chargaff’s rules today. The ability

of Ribonucleic acid (RNA) to also form base pairs similar to DNA was proposed

by Rich and Watson [48] in 1954, whereas in RNA thymine (T) is replaced by

uracil (U). Additionally it has been shown [60] that energetically weaker so called

Wobble pairs may occure, letting guanine (G) pair with uracil (U). This leads to

the possible base pairs AU, GC and GU and their reversals for (double stranded)

RNA molecules. The structural formulas for AU and GC pairs including their

energetically weak hydrogen bonds are shown in Fig. 3.
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Figure 3: AU and GC base pairs. On the left side of each base pair are the purine bases
adenine (A) and guanine (G). To the right hand, the pyrimidines uracil (U) and
cytosine (C) are shown. Dashed lines indicate the hydrogen bonds between
them.

As mentioned above, RNA most often exists as a single stranded molecule with

no complement. This opens the possibility for intramolecular base pairs which

occur if the molecule folds back on itself and brings complementary regions of

its own sequence close to each other. The resulting two-dimesional structure,
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depicted in Fig. 4 (B), is called the secondary structure of the RNA sequence,

providing information about which bases form base pairs. It has to be noted that

base triplets that arise if a base pair interacts with another single nucleotide but

also knotted structures and pseudo-knots are excluded from the definition of

secondary structures. They are assumed to be part of the tertiary structure as

they would complicate the mathematical prediction of secondary structures too

much.

tertiary structure The distribution of the RNA molecule in 3-dimensional

space is called tertiary structure. This spatial structure, which is usually deter-

mined by further intramolecular but also intermolecular forces between RNA and

the solvent including its ingredients, is essential for properly fulfilling its role as

information carrier or catalytically active particle.

Figure 4: Structures of a 49 nucleotide RNA hammerhead ribozyme taken from [58]. (A)
Primary structure as supplied in the article. (B) Secondary structure predicted
with RNAfold of the ViennaRNAPackage [27] (C) Tertiary structure displayed by
PyMOL, 3-D structure based on PDB-ID 1RMN

functions of rna RNAs are multifunctional. As mRNA they carry the

genetic information of a polypeptide that is built in the cell from the nucleus to

the cytosol, but they also act as catalytic active molecules. Even the transfer of
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molecules from one place in the cell to another can be done by RNA, i.e. transfer

RNA (tRNA) transfers amino acids to the ribosomal complex. An example for

the catalytic activity is the reaction to form the covalent peptide bond between

aminoacids in the translation of mRNA to a polypeptide in the ribosomal complex,

which is catalysed by ribosomal RNA (rRNA) [45]. Additionally, RNA itself is

able to catalyze RNA replication in the absence of proteins [3]. Other kinds of

RNA, like small nuclear RNAs (snRNAs) that also exist as complexes of specific

proteins and snRNAs, the so called small nuclear ribonucleoproteins (snRNPs), play

a significant role in enzymatic reactions of RNA intron splicing, maintenance

of DNA telomeres and also the regulation of transcription in the nucleus. RNA

is able to catalyze a wide range of reaction types, including phosphoryl group

transfer, isomerisation of C-C bond and hydrolytic reactions, thus it can function

similar to protein enzymes [61]. Corresponding to protein enzymes, catalytic

active RNAs are also known as ribozymes.

the rna world The ability to act as enzymatic particle and also the template

properties raise RNA molecules to the only known biological macromolecules

which are able to function as genotype as well as phenotype. This opens the

possibility for precellular evolution and Darwin’s "survival of the fittest" at the

RNA level in the absence of proteins or DNA and supports the idea that an

RNA World where RNA served as carrier of genetic information and also as

a catalytically active unit stood at the origin of life [2, 8, 18, 24, 32]. RNAs

therefore have all prerequisites for studies of Darwinian selection at the RNA

level, recently investigated by experiments confirming the quasi-species effect of

subviral circular RNA plant-pathogens (viroids) [6, 23] and evolutionary effects

on replicating RNA sequences [37].
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2.2 rna secondary structures

2.2.1 Secondary Structure Graphs

From the graph theoretic point of view, a secondary structure is a set of vertices

V = {1, . . . , n} of numbered nucleotides, starting with 1 on the 5’-end of the

RNA sequence, increasing up to n for the most 3’ nucleotide on a sequence

with length n and a set of edges E = {(i, j)} denoting connected bases. A

connection between two bases i and j can be a weak hydrogen bond between the

two compatible ribonucleotide bases i and j, demarked as a base pair (i, j), or a

strong phosphodiester bond ipj representing the covalent interconnection of two

adjacent bases by the phosphate backbone.

Definition 2.1 The adjacency matrix A with entries ai,j = 1 for all edges (i, j) ∈ E

of a valid and feasible secondary structure graph has to fulfill the following properties:
[64, 66]

1. ai,i+1 = 1 for 1 6 i < n.

2. For each fixed i, 1 6 i 6 n, there is at most one ai,j = 1, where j 6= i± 1.

3. If ai,j = ak,l = 1 and i < k < j and i 6= l 6= j, then i < l < j.

As mentioned above, there are two types of bonds in a secondary structure graph.

The strong phosphodiester bond is fixed by the RNA sequence itself and assured

by condition (1) of Def. 2.1, whereas the second type is a bit more interesting by

providing information about paired and unpaired bases. Therefore a definition

of paired and unpaired is necessary.

Definition 2.2 A vertex i ∈ V

• forms a base pair with vertex j ∈ V , if ∃(i, j) ∈ E with |i − j| 6= 1

• is unpaired otherwise.

Condition (2) of Def. 2.1 states that each ribonucleotide base is able to form a

base pair with at most one other ribonucleotide base. And finally, condition (3) of

Def. 2.1 assures that the secondary structure contains no (knots and) pseudoknots

as they are assumed to be part of the tertiary structure.
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structure decomposition

Definition 2.3 A vertex v is interior to a base pair (i, j), if i < v < j and is immediately
interior to a base pair (i, j), if there is no (p, q) such as i < p < v < q < j. In addition,
a base pair (p, q) is called (immediately) interior to a basepair (i, j) if vertex p and q

are (immediately) interior to the basepair (i, j). Originating from that aspect, the k − 1

immediately interior base pairs and the u immediately interior unpaired bases set up the
so called k-loop closed by the exterior pair (i, j).[73]

If k = 1, there is no immediately interior base pair (p, q) enclosed by (i, j). So the

u vertices immediately interior to (i, j) form a hairpin loop of size u with closing

pair (i, j). If k = 2 and u = 0, the enclosed base pair (i + 1, j − 1) forms a stacked
pair with the closing base pair (i, j). 2-loops are called a bulge if u > 0 and either

i + 1 or j − 1 forms a base pair with another vertex v with i + 1 < v < j and

i < v < j − 1. If none of them form such a base pair, the 2-loop is called an interior
loop. Every k-loop with k > 2 is called a multi loop or multiple loop.

Definition 2.4 The size of a k-loop is the number u of immediately interior unpaired
bases to the k-loop with closing pair (i, j). If k > 1 and there are no immediately interior
unpaired bases, the loop has a size of zero. For 1-loops the minimal loop size m of
immediately interior unpaired bases which arizes from steric effects is generally fixed to
m = 3.

Lemma 2.1 Any secondary structure Ψ can be uniquely decomposed into k-loops with
closing base pair (i, j) and external vertices v that are not interior to any other base pair
(i, j).

Proof. Each k-loop is uniquely characterized by its closing pair (i, j). Any vertex

p, that is involved in a base pair (p, q) is part of the closing pair of an unique

k-loop. Unpaired vertices instead are either immediately interior to a unique

basepair and therefor part of an unique k-loop or exterior to any basepair (i, j) ∈
Ψ.

Definition 2.5 A base pair (i, j) is called terminal if there are no base pairs (p, q) such
as p < i < j < q. K-loops that have a closing pair which is terminal are denoted as
component of Ψ.
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Lemma 2.2 Any secondary structure Ψ can be uniquely decomposed into components
and external vertices. Any k-loop is contained in a component or is a component itself.

Since components are also k-loops and we have proven the unique decomposition

of Lemma 2.1, the proof is trivial.

notations In the following sections bases i and j that pair with each other

are demarked as a base pair (i, j). Parts (subsequences) of an RNA sequence

from position i to j will be marked as [i, j] and are also referred to as segments or

intervals.

2.2.2 Representation

Instead of providing a set of vertices and edges it is more useful and intuitive

to provide a simplified picture for representation, especially for larger RNA

secondary structures, as it was done in some figures before. There are several

ways for representing RNA secondary structures.

normal representation The first pictoral representation consists of a

curved line - the phosphate backbone - which connects the equidistantly dis-

tributed nucleotide labels A,U,C and G. Furthermore, nucleotides are arranged

to facilitate the connection of paired bases in the secondary structure by short

segments of fixed length. (See Fig. 5)

These 2-D representations are widespread and used by biologists since the first

RNA secondary structures were investigated in the 1960s [17]. Also some RNA

secondary structure prediction programs, for example RNAfold of the Vienna RNA

Package [27], provide such an output for their predicted secondary structures.

The exclusion of knots and pseudoknots from secondary structures, done by

condition (3) of Def. 2.1 ensures that each secondary structure graph is planar, i.e.

it can be drawn on a plane without overlapping sections.

linked graph representation A quite similar way which also directly

arises from the graph theoretical view of the secondary structure is the linked
graph representation. In this representation the vertices 1 to n are drawn vertically
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Figure 5: Normal graph representation of predicted Avocado sunblotch viroid secondary
structure

on a line, connected by the edges (i, i + 1),∀1 6 i < n, demarking the phosphate

backbone of the RNA molecule. These vertices are usually labeled by the shortcut

of the nucleotide they are representing (A,U,C,G). All base pair denoting edges

(i, j) with |i − j| 6= 1 will then be drawn as arcs from vertex i to j. Assuming that

the secondary structure is valid in terms of Def. 2.1, none of these "base-pair-arcs"

will intersect each other. (See Fig. 6)

Figure 6: Linked graph representation of predicted Avocado sunblotch viroid secondary
structure

circular graph representation Instead of drawing the phosphate back-

bone as a horizontal line as shown above, which is quite a bit space consuming if

one wants to represent a secondary structure of a "long" RNA sequence, Ruth

Nussinov suggested the usage of a a circle depicting it [47]. Apart from that, arcs

were used again to represent basepairs as they do in the previous representation.

(See Fig. 7)

dot-bracket notation The Dot-Bracket Notation is a string of length n. Al-

though the name suggests the usage of dots and brackets in this string, parenthesis

are used rather than brackets. A base pair (i, j) in the secondary structure is

assigned to a pair of parenthesis with opening ’(’ at character position i and

closing ’)’ at character position j in the string. Unpaired bases u are denoted as a

’.’ at character position u respectively. (See Fig. 8)
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Figure 7: Circular graph representation of predicted Avocado sunblotch viroid secondary
structure

UUUAUUAGAACAAGAAGUGAGGAUAUGAUUAA

..((((...((.....))...)))).......

Figure 8: Dot-Bracket Notation of an artificial RNA sequence and its predicted secondary
structure
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The Dot-Bracket Notation is often taken as an easy to use, but human readable, dig-

ital interchange format of RNA secondary structures for RNA folding programs

like those involved in the ViennaRNA Package [27].

moutain plot Paulien Hogeweg and Danielle Konings [30, 33] devised

another 2-D graphical representation - the so called mountain representation -

which leads to a quite simple method for the comparison of RNA secondary

structures. One can derive such a mountain plot from a Dot-Bracket notation by

identifying the characters ’(’, ’)’ and ’.’ with moves "up", "down" and horizontal".
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Figure 9: Mountain Plot of predicted Avocado sunblotch viroid secondary structure

While the height (y-coordinate) of the mountain plot at an arbitrary position u

(x-coordinate) is the number of surrounding basepairs (i, j) with i < u < j, a peak
in a mountain representation indicates hairpin loops, showing the unpaired bases as

a plateau enclosed by symmetric slopes representing the stem. Plateaus always

appear in regions which correspond to unpaired bases in the secondary structure.

A plateau interrupting a sloped region is the representation of a bulge. If the

plateau occurs paired with another plateau of the same height on the other side

of the mountain it points to an interior loop. Valleys which are higher than zero

represent stem enclosed intermediate unpaired bases in a multiloop, whereas if

their height equals zero they separate the components of the secondary structure.
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This representation was one inspiration for the alignment algorithm for secondary

structures introduced in [33].

dot plot The dot plot representation as shown in Fig. 10 consists of an upper

and a lower triangle of a quadratic matrix. In both dimensions, each letter of

the primary structure is assigned to a matrix index i and j, respectively. Matrix

entries at position i, j are filled by black boxes indicating a base pair (i, j). Actually

one triangle would be sufficient to represent an RNA secondary structure but

as shown in Fig. 10 even more information can be included by using both, the

upper as well as the lower triangle of the complete quadratic matrix. In the upper

triangle, the size of the boxes depends on the base pairing probability where small

boxes indicate low and large boxes high probability to form a base pair (i, j). The

lower triangle is filled by boxes of equal size, depicting the secondary structure

with minimal free energy. Such diagrams are useful for comparative analyses and

their extended design which includes base pairing probabilities allows a compact

machine but also human readable representation of much information.

artificial sequence and structure
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Figure 10: Dot Plot of an artificial RNA sequence and its predicted secondary structure.
In the upper triangle the size of the black boxes is proportional to the square
of the equilibrium base pairing probabilities. The lower triangle depicts the
secondary structure with minimal free energy.
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2.3 rna folding algorithms

In 1980, Nussinov and Jacobson [46] were the first to design an efficient and

precise algorithm for the prediction of secondary structures. Their algorithm fills

two matrices M and K with the maximum numbers of base pairs (Mi,j) which

can be formed in the interval [i, j] and the position of base k that pairs with j.

After recursively filling the matrices the maximum number of base pairs of the

folded sequence from position 1 to n is determined. By applying a trace-back

routine afterwards - the so called backward recursion - a secondary structure with

the maximum number of base pairs is deduced.

Instead of just maximizing the number of base pairs, subsequent RNA folding

algorithms take energy rules into account. This allows predictions of secondary

structures by regarding their thermodynamic stability. The most often used energy

model and its corresponding dynamic programming approach was introduced

by Zuker and Stiegler in 1981 [74]. It is explained in more detail on the following

pages because all discussed folding algorithms in this work are based on this

loop-based energy model.

loop-based energy model As shown in the previous section, an RNA

secondary structure graph can be uniquely decomposed into loops and "external"

bases. Starting from that point, the main idea behind the loop energy model is

that the total free energy of an RNA secondary structure depends on the energies

of these loops only. Furthermore the total free energy of a secondary structure is

additively composed by the free energy of its loops. External bases are assumed

to not contribute to the energy. The free energy F(S) of a possible secondary

structure S, can now be expressed as the sum of the contributing free energies FL

of its loops L ∈ S.

F(S) =
∑
L∈S

FL (2.1)

So, for the calculation of the total free energy of an RNA secondary structure, the

energies of the formed loops have to be evaluated. For a small set of loop types,

the loop energies have been experimantally determined and are used as energy

tables in secondary structure predicting programs [31, 39, 57].
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limitations Some simplifying assumptions have to be made when predicting

RNA secondary structures under an energetical point of view. First the relation

of the energetically most stable structure and the most likely structure in vivo

has to be taken into account. By excluding influences of external forces in the

surrounding environment and following Boltzmann’s law, they are assumed to

be similar. Another assumption is that the energy associated with an arbitrary

position in the structure only depends on the local sequence and structure. This

means, that the energy associated with a loop and its closing base pair (i, j) is

influenced only by previously found base pairs (p, q) with i < p < q < j and not

by other elements. It should be noted that the latter assumption becomes a bit

less restrictive when introducing energy contributions of dangling end bases.

dynamic programming approach When predicting secondary structures

with certain properties, like minimal free energy or suboptimality, algorithms that

find all possible loops L and their associated free energies FL have to be investi-

gated.

In 1981, Zuker and Stiegler introduced a dynamic programming algorithm to

compute the optimal secondary structure according to its free energy for a se-

quence of n nucleotides in time proportional to O(n3) [74]. Their work was

based on the dynamic programming algorithm for the computation of the maxi-

mum base pairing of a folded RNA molecule formulated by Nussinov et al. [47]

and the work of Waterman and Smith [66] whose algorithm takes stacking and

destabilizing energies into account.

The idea behind the algorithm of Zuker and Stiegler is to calculate for all possible

pairs of bases i and j satisfying i < j two energies W(i, j) and V(i, j). W(i, j)

represents the minimum free energy of all possible structures formed on the

subsequence [i, j] while V(i, j) is the minimum free energy of all possible struc-

tures on the subsequence [i, j] with the requirement that i forms a base pair (i, j)

with j. The determiniation of the energy contribution V(i, j) is subdivided into

the evaluation of three possible loop-degree-dependant energies E1, E2 and E3,

taking 1 − loops, 2 − loops and k − loops with k > 2 into account. Their ansatz

to predict a secondary structure with a minimum free energy leads to a mini-

mization of the additive energies of possible substructures which are recursively

computed from the smallest subsequences [i, j] up to the complete sequence [1, n].
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V(i, j) = min {E1, E2, E3}

E1 = H(i, j)

E2 = min
i<i ′<j ′<j

{
I(i, j; i ′, j ′) + V(i ′, j ′)

}
E3 = min

i+1<i ′<j−2

{
W(i + 1, i ′) + W(i ′ + 1, j − 1)

}
W(i, j) = min {W(i + 1, j), W(i, j − 1), V(i, j), E4}

E4 = min
i<i ′<j−1

{
W(i, i ′) + W(i ′ + 1, j)

}
(2.2)

The first line of (2.2) shows the evaluation of the minimal free energy of the three

loop types, hairpin loops (E1), interior loops, bulges or stacked pairs (E2) and multiple
loops (E3).

E1 as shown in the second line is the tabulated free energy of a hairpin loop with

closing pair (i, j) and in practice it depends not only on the type of the closing pair,

but also on the loop length l indicating the number of unpaired bases l = j − i − 1.

Furthermore, the sequence of a loop may play a role as a destabilizing factor, too.

But experimentally determined sequence dependent energy contributions are

rare and therefore used in the computation of loops of limited size like tri- and

tetra-loops only. Another property influencing the stability is the mismatch energy

contribution which adds a further destabilizing factor based on the adjacent

nucleotides i + 1 and j − 1 of the closing pair (i, j).

The energy table H used in (2.2) depends on the size of the loop and the type

of its closing pair. But in practice, it is limited in the loop size dimension on the

one hand due to the limitation of experiments, which can not be performed for

the extremely large amount of possible combinations of closing pairs (i, j) and

loop sizes l and on the other hand due to the amount of memory that has to be

used to store these energy contributions. A work-arround for this situation was

introduced in 1988 by Turner et al. [57]. They extrapolated energy values for

large hairpin loops with l > 30 logarithmically by

H(i, j, l) = H(i, j, 30) + r · log(l/30) (2.3)

where r is a constant.
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E2 comprises the free energy of each possible 2 − loop with closing pair (i, j) and

interior pair (i ′, j ′). This energy is determined by adding the free energy of the

structure enclosed by (i ′, j ′) to the free energy which arises due to the formation

of the 2 − loop. The latter one, I(i, j; i ′, j ′), mainly depends on the closing pairs

and the loop size l and is also tabulated as a set of experimentally determined or

mathematically extrapolated energy parameters. Furthermore the size l has to

be decomposed into two separate loop lengths u = i ′ − i − 1 and v = j − j ′ − 1

constituting the total length l = u + v to take the asymmetry of a 2 − loop into

account.

When examining I(i, j, i ′, j ′) the evaluation of the energy contribution for all (i ′, j ′)

with i < i ′ < j ′ < j would let the algorithm’s time complexity grow proportional

to O(n4), so an additional limitation was introduced. It is biologically reasonable

that 2 − loops are seldom very large in the number of unpaired immediately

interior bases. Therefore their loop size can be constrained to be less than some

fixed number [74][73]. With this contraint, the dominant term in the complete

algorithm becomes the search for multi loops which takes cubic time.

Multi loop energy contribution is shown in the fourth line. Clearly, their simple

algorithm does not explicitly handle multi loops as separate loop types but as

compositions of 1− or 2 − loops, where the closing pair (i, j) does not contribute

any additional free energy. All k − loops with k > 2, which are called bifurcation
loops in their article, are split into two separate substructures until primitive

k − loops with k 6 2 appear.

The different loop types examined with closing pair (i, j) that contribute their

free energy in V(i, j) are shown in Fig. 11.

The last lines of (2.2) show the structure decomposition into substructures and

their related energy contribution. A graphical description of Zuker’s structure

decomposition constituting the energy values in W(i, j) is shown in Fig. (12)

As mentioned earlier, the algorithm starts with the evaluation of W(i, j) for the

smallest subsequences [i, j]. These subsequences are normally pentanucleotides

according to the minimal loop length of 3 unpaired bases and the 2 bases constitut-

ing the base pair. The algorithm then increases the length of these subsequences

successively until the complete sequence [1, n] is processed and the upper trian-

gles of the matrices W and V are filled. Afterwards, the minimal free energy of

the folding of the complete sequence can be obtained at W(1, n) and a trace-back
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Figure 11: Loop types in Zuker’s MFE algorithm

routine similar to the one in [46] is applied to reconstruct the base pair pattern of

the appropriate secondary structure. The trace-back routine, which is also called

backtracing or backtracking, will be discussed in detail in 2.3.1.

multi loop decomposition Considering the treatment of multi loops

in (2.2) that actually is a simple partition into two substructures, it is evident

that multi loops are not really treated as separate loop types in this ansatz. A

possibility to take the multi loop energy contributions into account would be to

experimentally determine their free energies and to construct a multidimensional

energy table as it is done for 1− and 2 − loops. But this results in an enormous

and practically unmanageable amount of experiments to be done, as each further

stem in the multiloop squares the number of experiments and therefore also

increases the dimension of the energy table by 2.

The lack of experimentally measured parameters for the computation of multi

loop contributions is often bypassed with a linear additive ansatz that only

depends on the destabilizing energy constant c of unpaired bases, the degree

(number of branches) δ of the multiloop and an energy contribution a for closing
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Figure 12: Structure decomposition in Zuker’s MFE algorithm

the complete loop.

M = a + b · δ + c · l (2.4)

The constant parameter b is the energy contribution for each branch and l

represents the length of the multi loop, thus the number of unpaired bases.

This linear ansatz allows fast prediction of multi loop energy contributions and

produces good results using a = 4.6, b = 0.4 and c = 0.1kcal/mol as shown by

Jaeger et al. [31].

recursion scheme Based on the previously described algorithm a new

recursion scheme can be constructed, taking the linear ansatz for multi loops

into account. Additionally, the multi loop decomposition which has to be altered

anyway will be constructed to uniquely decompose multi loops into rightmost

parts with exactly one stem and a left part with at least one stem. This ensures

that each structure is counted exactly once in the recursions and thus allows

the computation of the partition function as described in a later section. It is also

necessary for suboptimal folding and the memory efficient folding of circular RNAs.

First, the last two lines of (2.2), where the best possible energy of the subsequence
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[i, j] is determined by scanning for adjacent unpaired bases and components, are

taken to formulate recursion (I). An energy array F that is similar to W in (2.2)

can now be filled by

Fi,j = min
{

Fi+1,j, min
i<k6j

Ci,k + Fk+1,j

}
(2.5)

The introduced energy array C used in the recursion above is equivalent to the

energy array V used by Zuker and Stiegler. It stores the best possible energy

contribution on the subsequence [i, j] under the constraint, that i pairs with j.

Except for the third part, the multiloop decomposition, recursion (II) equals the

computation of V(i, j) in (2.2).

Ci,j = min {H(i, j),

min
i<d<e<j

I(i, j, d, e) + Cd,e,

min
i+1<u<j−1

Mi+1,u + M1
u+1,j−1 + a

}
(2.6)

Here, the last line shows the decomposition of multi loops into a rightmost part

with exactly one stem, storing its energy contribution into an auxilary energy

array M1, and the left multiloop part with at least one stem, using the auxilary

energy array M. The energy contribution a which is obtained by closing the

multiloop with base pair (i, j) is also taken into account.

The two additional arrays M and M1 have no equivalent in (2.2) because they

originate from the linear ansatz of the multi loop decomposition in (2.4). Therefore

two additional recursion (III) and (IV) are used to recursively compute the array

elements.

Mi,j = min
{
Mi,j−1 + c,

min
i<u<j−1

Cu+1,j + b + (u − i − 1) · c,

min
i<u<j−1

Mi,u + Cu+1,j + b

}
(2.7)

M1
i,j = min

{
Mi,j−1 + c, Ci,j + b)

}
(2.8)

After filling all arrays, the minimal free energy of a secondary structure of an

RNA sequence can be obtained at F1,n
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The recursion scheme introduced is graphically represented in Fig. 13 and can

be applied not only to the computation of the MFE as it was done in (2.5) - (2.8),

but also to other RNA folding algorithms, e.g. the computation of the partition

function or the prediction of suboptimal secondary structures.

dangling ends Additional stabilizing energies which arise if an unpaired

nucleotide stacks with an adjacent base pair [62] are called dangling-end contribu-
tions. When calculating the free energy of a loop, three possibilities for regarding

dangling-end contributions exist. Firstly they may be ignored and therefore do

not play a role in the algorithm. The second way is to take them into account

for every combination of adjacent bases and base pairs. And thirdly, a more

complex energy model can be applied letting unpaired bases stack with at most

one base pair. The Vienna RNA Package implements each of these three models

plus an additional energy contribution for coaxial stacking of helices. In the

following secondary structure predicting algorithms loop energy contributions

are configurated with the second case, taking each combination of unpaired bases

and their adjacent base pair into account. Dangling-end contributions where

the adjacent unpaired base stacks onto the closing pair of a hairpin, bulge, stacked
pair or interior loop are assumed to be already included in the appropriate energy

table H and I. All other cases are covered by the parameters d5
i,j,i−1 and d3

i,j,j+1

according to the location of the unpaired base at the 5 ′ or 3 ′ direction of the base

pair. The first two subscripted sequence positions demark the base pair (i, j), the

last position is the unpaired base i − 1 or j + 1 which stacks.

2.3.1 Minimum Free Energy

The prediction of a secondary structure with minimal free energy based on the

recursion scheme in Fig. 13 is divided into two steps again. First, the minimal

free energy is determined in the forward recursion and afterwards the backward
recursion reconstructs the base pairing pattern. Taking the linear ansatz for the

multiloop decomposition and stabilizing dangling-end contributions into account,

the MFE algorithm can be formulated thus:
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Figure 13: Common recursion scheme for RNA folding
(I) denotes either Fi,j in the MFE case or Qi,j when applied to the partition
function algorithm. DI1 and DI2 are possible decompositions in step (I).
(II) is replaced by either C or QB in the MFE case and the partition function case,
respectively. The decompositions DIIx denote the possible decompositions
into a hairpin (x = 1), into an interior loop (x = 2) or into a multi loop structure
(x = 3).
(III) is subsituted by M in the MFE case or by QM when the scheme is applied
to the partition function. Decompositions DIIIx denote nibbling of the most
3 ′ base (x = 1), separation into unpaired bases and exactly one stem (x = 2) or
separation into a left part with at least one stem and a right part with exactly
one stem (x = 3).
(IV) is either M1 if the scheme is applied to the MFE algorithm or QM1

in
the partition function case. The two possible decompositions DIV1 and DIV2

display nibbling of the most 3 ′ base or regarding (i, j) as the closing pair of
one stem of the multi loop.
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forward recursion The only additions to (2.5) - (2.8) are the contributions

d5 and d3 that have to be added when decomposing multi loops or structure

segments.

Fi,j = min
{

Fi+1,j, min
i<u6j

Ci,u + d5
i,u,i−1 + d3

i,u,u+1 + Fu+1,j

}
Ci,j = min

{
H(i, j)

min
i<p<q<j

{Cp,q + I(i, j; p, q)} ,

min
i<u<j

{
Mi+1,j−1 + M1

u+1,j−1 + a + d5
j,i,j−1 + d3

j,i,i+1

}}
Mi,j = min {

min
i<u<j

{
(u − i − 1) · c + Cu+1,j + d5

u+1,j,u + d3
u+1,j,j+1 + b

}
,

min
i<u<j

{
Mi,u + Cu+1,j + d5

u+1,j,u + d3
u+1,j,j+1 + b

}
,

Mi,j−1 + c
}

M1
i,j = min

{
M1

i,j−1 + c, Ci,j + d5
i,j,i−1 + d3

i,j,j+1 + b
}

(2.9)

backward recursion In contrast to the forward recursion of the MFE algo-

rithm, which starts with the calculation for pentanucleotide sequence segments

and ends with the complete sequence [1, n], the backtracking procedure starts

with the complete sequence and decreases the sequence length to smaller seg-

ments. In detail, it finds all immediately interior base pairs for any segment [i, j]

which has to be evaluated. Immediately interior base pairs found constitute new

segments to evaluate further. This strategy is also known as depth first search. It

ends if there is no segment left for evaluation and the resulting set of base pairs

represents the secondary structure with minimum free energy.

Starting with segment [1, n]E which has been folded to a structure with minimum

free energy F1,n and therefore belongs to the F energy array, the backtracking

procedure recursively decomposes each segment into subsegments. This de-

composition is always done according to the energy array E = {F, C, M, M1} the

segment belongs to.

If the segment belongs to F a reversed version of the first equation of algorithm

2.9 is used to decide which segments have to be evaluated further. Base i is
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unpaired on the segment [i, j]F if

Fi,j = Fi+1,j (2.10)

The resulting segment for further evaluation in the next recursion step is [i + 1, j]F.

The other possibility is, that there exists a base u, forming a basepair (i, u) and

fulfilling the criterion

Fi,j = Ci,u + d5
i,u,i−1 + d3

i,u,j+1 + Fu+1,j. (2.11)

In that case, the resulting segments [i, u]C and [u + 1, j]F and their appropriate

energy arrays C and F are used in the next recursion step.

For backtracking in C, the algorithm decides whether the base pair (i, j) is the

closing pair of a hairpin loop

Ci,j = H(i, j) (2.12)

In this case backtracking on segment [i, j]C terminates. On the other hand, if the

base pair (i, j) is a closing pair of a 2-loop (interior loop, stack or bulge) with

interior base pair (p, q) it fulfills

Ci,j = Cp,q + I(i, j; p, q) (2.13)

for some p and q with i < p < q < j and the subsegment [p, q]C left is processed

further in the next backtracking step.

The third loop type where (i, j) may be closing pair of is a multi loop. A position

u with i < u < j, fulfilling

Ci,j = Mi+1,u + M1
u+1,j−1 + a + d5

j,i,j−1 + d3
j,i,i+1. (2.14)

has to be determined in this case. The resulting multi loop parts [i + 1, u]M with

at least one further stem and [u + 1, j − 1]M1 with exaclty one stem then have to

be backtracked further.

When backtracking in M, three cases have to be distinguished, too. Firstly, the 3 ′

base j is left unpaired if

Mi,j = Mi,j−1 + c (2.15)
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In that case j will be nibbled and the algorithm evaluates segment [i, j − 1]M next.

In the second case, a position u separating the one and only immediately interior
base pair (u + 1, j) from a segment of unpaired bases [i, u] is searched. The

obtained segment [i, u] will not be evaluated further as this segment contains no

base pairs. Segment [u + 1, j]C on the other hand is used in the next recursion

step.

Mi,j = (u − i − 1) · c + b + Cu+1,j

+ d5
u+1,j,u + d3

u+1.j,j+1 (2.16)

The third and last case of backtracking in M holds, if

Mi,j = Mi,u + b + Cu+1,j

+ d5
u+1,j,u + d3

u+1,j,j+1 (2.17)

This is the case, if [i, j]M encloses a multi loop part with more than one internal

stem. For this evaluation, the algorithm searches for the position u separating

segment [u + 1, j]C that represents exactly one stem of the multi loop from the

other segment [i, u] that contains at least one further branch.

Finally, backtracking in M1 leads to the case discrimination, whether i forms a

base pair with j, constituting a stem of the surrounding multi loop

M1
i,j = b + Ci,j

+ d5
i,j,i−1 + d3

i,j,j+1 (2.18)

or if j is unpaired and hence must be nibbled.

M1
i,j = M1

i,j−1 + c. (2.19)

The algorithm proceeds by backtracking in the appropriate energy arrays of

segments [i, j]C or [i, j − 1]M1 , respectively.

After processing all smallest subsequences the algorithm terminates and the base

pairs found set up the secondary structure with minimal free energy.
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2.3.2 Partition Function

In many bioinformatics applications, one is not only interested in the MFE and a

related secondary structure, but in the probability of the occurance of a secondary

structure si in the whole secondary structure space S spanned by the RNA

sequence, or in the probability Pi,j of the occurance of a single basepair (i, j). To

compute such probabilities one needs to have information about the set of all

possible secondary structures S. This is collected in the partition function Q of an

RNA sequence, where F(s) denotes the free energy of structure s ∈ S, R is the gas

constant and T the absolute temperature:

Q =
∑
s∈S

e
−F(s)

RT (2.20)

The Boltzmann weight E = e
−F(s)

RT corresponding to each energy contribution F(s)

is the additive term. The partition function also provides the ability to study

melting kinetics of RNA molecules, because the Boltzmann weight introduces a

temperature dependant energy contribution.

It has been shown that the number of possible secondary structures and thereby

the number of summands in Q of an RNA sequence grows exponentially [64]

with increasing sequence length n. This fact seems to make the computation of Q

impossible in polynomial time. However, McCaskill [41] introduced a dynamic

programming algorithm to compute the equilibrium partition function Q and also

the basepairing probabilities Pi,j of a given RNA molecule in time proportional

to O(n3).

equilibrium partition function The computation of the partition func-

tion is very similar to the MFE algorithm. The main difference is, that all minima

in the MFE algorithm are replaced by sums because each possible secondary

structure reflects a contributing part of the partition function. Furthermore, the

additivity of free energies implies multiplicativity of the Boltzmann weighted

contributions to the partition function.

Introducing a factor β = 1
RT for simplifying the equations, the recursive algorithm
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can be applied formal to the common recursion scheme as follows:

Qi,j = 1 +
∑

1<k<j

QB
i,k ·Qk+1,j · e−β·(d5

i,j,i−1+d3
i,j,j+1)

QB
i,j = e−β·H(i,j)

+
∑

i<d<e<j

e−β·I(i,j;d,e) ·QB
d,e

+
∑

i<u<j

QM
i+1,u ·QM1

u+1,j−1 · e−β·a · e−β·(d5
i,j,j−1+d3

i,j,i+1)

QM
i,j = QM

i,j−1 · e−β·c

+
∑

i<u<j

e−β·(u−i−1)·c ·QB
u+1,j · e−β·b · e−β·(d5

u+1,j,u+d3
u+1,j,j+1)

+
∑

i<u<j

QM
i,u ·QB

u+1,j · e−β·b · e−β·(d5
u+1,j,u+d3

u+1,j,j+1)

QM1

i,j = QM1

i,j−1 · e−β·c + QB
i,j · e−β·b · e−β·(d5

i,j,i−1+d3
i,j,j+1) (2.21)

Following the recursion scheme introduced in Fig. 13 on page 25, the algorithm

fills the upper triangles of four matrices, labeled by Q, QB, QM and QM1
.

Corresponding to the energy array F of the MFE algorithm, entries Qi,j ∈ Q

store the partition function of the subsequence [i, j]. QB is the equivalent array

to C of the MFE algorithm, filled with the partition function of subsequences

[i, j] under the constraint that i and j form a basepair (i, j), while QM and QM1

correspond to M and M1 with an equivalent meaning. By summation of the

Boltzmann weighted energies, the algorithm collects the energy contribution of

the complete secondary structure ensemble of a particular sequence, beginning

with short pentanucleotides and increasing the subsequence length until the

partition function Q = Q1,n of the complete sequence [1, n] has been computed.

base pairing probabilities After the computation of the partition func-

tion Q and filling of the appropriate energy arrays Q, QB, QM and QM1
, one is

able to calculate the equilibrium probability Pi,j of the occurance of each possible

base pair (i, j) in the secondary structure ensemble. This is quite simple if (i, j)

is not interior to any base pair (p, q), thus @(p, q) : p < i < j < q, and can be

expressed by

Plin
i,j =

Q1,i−1 ·QB
i,j ·Qj+1,n

Q1,n
(2.22)
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This equation also indicates, what is meant by the base pairing probability. It

is the proportion of equilibrium weighted structures where the base pair (i, j)

occurs compared to the whole secondary structure space.

The computation of Pi,j gets more difficult if (i, j) is surrounded by at least one

base pair (p, q). This implies that all possible surrounding base pairs and the

corresponding loop types where (i, j) becomes part of have to be taken into accout.

This additional factor will be added to (2.22) and leads to the common recursive

formula [41] for the calculation of Pi,j formulated in (2.23).

Pi,j = Plin
i,j · e

−β·(d5
i,j,i−1+d3

i,j,j+1)

+
∑

p<i<j<q

Pp,q ·
QB

i,j

QB
p,q

· e−β·I(p,q,i,j)

+
∑
p<i

Qi,j · e−β·(a+b) ·

{
∑
q>j

Pp,q

QB
p,q

· e−β·((q−j−1)·c+d5
q,p,q−1+d3

q,p,p+1) ·QM
p+1,i−1

+
∑
q>j

Pp,q

QB
p,q

·QM
j+1,q−1 · e

−β·((i−p−1)·c+d5
q,p,q−1+d3

q,p,p+1)

+
∑
q>j

Pp,q

QB
p,q

·QM
j+1,q−1 ·QM

p+1,i−1 · e
−β·(d5

q,p,q−1+d3
q,p,p+1)

}
(2.23)

The first line of (2.23) covers the contribution of (2.22). The second line shows

the probability contributed by all interior loops containing (i, j) by summing

over all possible enclosing base pairs (p, q). The last lines take the possibility

that (i, j) is part of a multi loop into account and are more complicated. In

detail, they cover the cases in which (i, j) delimits the most 3 ′, the most 5 ′ or an

intermediate branch of the multiloop, respectively. On the first view, it seems to

be that the overall time complexity to calculate Pi,j grows proportinal to O(n4).
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But if introducing two auxiliary linear probability arrays PM and PM1
with

PM
p,j =

∑
q>j

Pp,q

QB
p,q

·QM
j+1,q−1 · e

−β·(d5
p,q,p−1+d3

p,q,q+1) (2.24)

PM1

p,j =
∑
q>j

Pp,q

QB
p,q

· e−β·((q−j−1)·c+d5
p,q,p−1+d3

p,q,q+1) (2.25)

and by filling these linear arrays at the right point in the recursions - when Pp,q

is calculated - the time complexity can be reduced to O(n3).

2.3.3 Suboptimal secondary structures

Although the previously described algorithm for computing the Minimum Free

Energy is widely used for prediction of RNA secondary structures, it has been

emphasized that it does not really predict the real situation in vivo for two

major reasons [72]. The first reason is that all experimentally measured energy

parameters used for computation are error-prone and therefore unavoidably

imprecise. Thus, the secondary structure associated with the true MFE could

be a suboptimal structure within the used energy parameter set and vice versa.

Biochemical constraints may alter relative energies within the molecule and are

also not taken into account while computing the MFE with energy parameters

derived from artificial conditions. The second point which has to be mentioned

is that under physiological conditions, an RNA molecule often exists in an

equilibrium of alternative states whose energy differences are small, instead of

only one particular secondary structure. Hence, for some scientific problems

it is a good idea to not only determine one single secondary structure which

represents the MFE with respect to the used parameter set, but to determine a set

of suboptimal structures within a given energy range arround the MFE.

Different approaches exist for computing suboptimal foldings of an RNA se-

quence. A widely used algorithm was presented by Zuker in 1989, which is

based on an extension of his algorithm for folding of circular RNAs [72]. For

each valid base pair within a given RNA sequence it generates the energetically

best structure containing that base pair. However, this approach fails to compute

all possible suboptimal secondary structures due to the usage of a base pair

constraint. In detail, the algorithm will always produce the MFE structure, if the



2.3 rna folding algorithms 33

constrained base pair is included in the MFE structure. Therefore no suboptimal

structures which differ in one or more base pairs from the MFE can be gener-

ated. Another disadvantage of this constraining base pair is the limitation of the

suboptimal structure space to a size of n·(n−1)
2 with sequence length n, whereas

the number of possible secondary structures grows exponentially with sequence

length n [64]. A way out of this limitation was introduced in 1999 by Wuchty et al.

[69]. They presented an algorithm to compute the complete suboptimal folding

of an RNA sequence, generating structures between the MFE and an arbitrary

upper limit. This approach constitutes an extensible basis for the computation of

suboptimal structures for circular RNA molecules in 4.2.1.

Complete suboptimal folding

The main idea behind the algorithm of Wuchty et al. is to use the forward recursion
of the conventional MFE algorithm for filling the energy arrays and to modify the

backtracking procedure inspired by the Waterman-Byers scheme [65]. In contrast

to the backtracking criterions of equation 2.10 to 2.19 introduced on page 27, they

replaced the strict equality conditions by inequalities of the form

Ei,j + ELS
+

∑
k,l

Ek,l 6 Emin + δ (2.26)

where Emin + δ is the upper boundary of the energy range from the MFE (E1,n)

to a userdefined deviation δ. ELS
denotes the summed energy of all substructures

already found. Ei,j is the energy of the current subsequence [i, j] to evaluate and∑
k,l Ek,l labels the best possible energy of all remaining subsequences which

have to be evaluated further.

According to the inequalities the possibility to fulfill more than one case in each

backtracking step arises and the amount of backtracked structures increases. To

handle the amount of data from each recursion step, their algorithm writes found

base pairs and subsequences to distinct base pair and interval stacks P and σ,

respectively. These stacks are contained in states S, which are written to a state

stack R again. A state S = (σ, P, ELS
) is a triple of an interval stack σ, a base pair

stack P and the summed energy of all substructures already found ELS
. S will

also be called partial structure in the following sections. For choosing the right

energy array in the backtracking process, each subsequence [i, j]E ∈ σ is labeled
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with the appropriate subscript E = {F, C, M, M1}.

The backtracking procedure starts with one initial state S = ([1, n]F; ∅, 0) on stack

R. It consists of the interval [1, n] as usual for the initial step in backtracking

the MFE structure, an empty stack of base pairs and an energy of 0, because

no substructures have been evaluated yet. The algorithm then pops the first

element from the state stack R and begins with a refinement of the so called partial
structure S. This refinement of S leads to the actual backtracking procedure for

one single secondary structure but also generates new partial structures which are

pushed onto the state stack R, allowing backtracking of more than one secondary

structure. A particular refinement procedure of a partial structure ends, if there is

no subsequence left on the interval stack σ. In this case the next state is popped

from R and a new refinement procedure of the current partial structure begins. The

complete extended backtracking procedure ends if there is no state left on R.

refinement of partial structures The refinement of a partial structure

S starts by popping an interval [i, j]E from the interval stack σ. Corresponding

to the type of energy array E, the following inequalities are tested and further

operations are performed.

• case E = F

When backtracking in F, the first inequality validated checks, if the 5’-end

can be left unpaired.

Fi+1,j + ELS
+

∑
[k,l]∈S

Ek,l 6 Emin + δ (2.27)

If (2.27) is true, the refinement S ′ = ([i + 1, j]F.σ, P, ELS
) will be pushed on

the partial structure stack R.

The second possibility checked for acceptance determines all possible left-

most basepairs (i, u) which achieve a free energy to fulfill the condition

Ci,u + Fu+1,j + ELS
+

∑
[k,l]∈S

Ek,l +

d5
i,u,i−1 + d3

i,u,u+1 6 Emin + δ (2.28)
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The refinement S ′ = ([i, u]C.[u + 1, j]F.σ, P, ELS
+ d5

i,u,i−1 + d3
i,u,u+1) of each

found position u will be pushed on stack R, whereas the evaluated basepair

(i, u) is not added to the basepair stack P in this step.

• case E = C

Backtracking in energy array C is performed if base position i forms a

basepair with base position j on the interval [i, j]C. Corresponding to (2.12)

- (2.14) three distinct conditions have to be tested for acceptance.

The first criterion simply checks if the base pair (i, j) may be a hairpin loop

with closing pair (i, j):

H(i, j) + ELS
+

∑
[k,l]∈S

Ek,l 6 Emin + δ (2.29)

In this case, the refinement S ′ = (σ, P ∪ {i · j}, ELS
+ H(i, j)) is pushed on

stack R. The next criterion searchs for base pairs (p, q) with i < p < q < j

constituting an interior loop, a bulge or a stacked pair. All base pairs (p, q)

fulfilling

Cp,q + I(i, j, p, q) + ELS
+

∑
[k,l]∈S

Ek,l 6 Emin + δ (2.30)

lead to a new partial structure S ′ = ([p, q]C.σ, P ∪ {i · j}, ELS
+ I(i, j, p, q))

pushed on R.

The last condition inspected checks for the possible occurance of a multiloop,

closed by basepair (i, j). Every position u that decomposes the interval

into a substructure with at least one stem with closing pair (p, q) with

i < p < q 6 u on the subinterval [i + 1, u]M and a substructure with exactly

one stem and closing pair (u+ 1, r) with u+ 1 < r 6 j− 1 on the subinterval

[u + 1, j − 1]M1 is examined.

Mi+1,u + M1
u+1,j−1 + a

+ ELS
+

∑
[k,l]∈S

Ek,l

+ d5
i,j,j−1 + d3

i,j,i+1 6 Emin + δ (2.31)

Each u that satisfies (2.31) leads to a new refinement S ′ = ([i + 1, u]M.[u +

1, j − 1]M1 .σ, P ∪ {i · j}, ELS
+ a + d5

i,j,j−1 + d3
i,j,i+1), pushed on the partial

structure stack.
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• case E = M

Corresponding to (2.15) - (2.17), the following inequalities consider the three

possibilities to construct a multiloop part with at least one stem. The first

just nibbles the rightmost base j,

Mi,j−1 + c + ELS
+

∑
[k,l]∈S

Ek,l 6 Emin + δ (2.32)

yielding S ′ = ([i, j− 1]M.σ, P, ELS
+ c) which is pushed on R. Corresponding

to (2.16) the second inequality checks whether there is a base position u

separating the interval [i, j] into a region of (u − i − 1) unpaired bases and

exactly one interior basepair (u + 1, j). If

Cu+1,j + (u − i − 1) · c + b

+ ELS
+

∑
[k,l]∈S

Ek,l

+ d5
u+1,j,u + d3

u+1,j,j+1 6 Emin + δ (2.33)

is accepted the refinement S ′ = ([u + 1, j]C.σ, P, ELS
+ d5

u+1,j,u + d3
u+1,j,j+1 +

(u − i − 1) · c + b) is pushed onto the partial structure stack R.

The third condition may be fulfilled when the interval [i, j] is decomposed

into a subinterval [i, u] containing at least one stem, and a loop enclosed

by the basepair (u + 1, j) constituting exactly one stem of the surrounding

multiloop.

Mi,u + Cu+1,j + MStem

+ ELS
+

∑
[k,l]∈S

Ek,l

+ d5
u+1.j,u + d3

u+1,j,j+1 6 Emin + δ (2.34)

The resulting refinement S ′ = ([i, u]M.[u+1, j]C.σ, P, ELS
+MStem +d5

u+1.j,u +

d3
u+1,j,j+1) is pushed on R again.

• case E = M1

The last remaining energy array the algorithm may backbacktrack in is M1.

Only two distinctions have to be done here, because the interval [i, j]M1

contains exactly one terminal basepair by definition and furthermore the
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base at position i must be paired with another downstream base u with

i < u 6 j. Hence, the first trivial condition is a check if j may be nibbled

M1
i,j−1 + c + ELS

+
∑

[k,l]∈S

Ek,l 6 Emin + δ (2.35)

If the inequality is met it leads to a further refinement S ′ = ([i, j−1]M1 .σ, P, ELS
+

c) to be pushed onto R.

The second possibility just handles the case where i pairs with j

Ci,j + b + d5
i,j,i−1 + d3

i,j,j+1

+ ELS
+

∑
[k,l]∈S

Ek,l 6 Emin + δ (2.36)

yielding to push the refinement S ′ = ([i, j]C.σ, P, ELS
+ d5

i,j,i−1 + d3
i,j,j+1 + b)

onto the stack R.

If none of the previously introduced conditions holds, hence the best possible

energy is too large, the whole partial structure will be dismissed. Else, the

refinement procedure of S continues until there are no further intervals [i, j]E in

σ. In this case, the base pairs in P constitute one found suboptimal secondary

structure and the algorithm proceeds by popping the next partial structure from R.

As mentioned before, the algorithm terminates if there is no partial structure S

on the stack R for further refinement.

Stochastic Backtracking

An additional way to obtain a set of suboptimal secondary structures is the so

called stochastic backtracking. Considering the previous algorithm for generating

the set of secondary structures within an energy range from the MFE, the number

of generated structures increases exponentially for larger δ. Also the computation

time increases quickly especially for longer RNA sequences, as the algorithm

degenerates to an enumeration of all possible secondary structures for δ >> Emin.

A solution of this dilemma is to generate statistically representative samples of

the Boltzmann ensemble of secondary structures. In this ensemble secondary

structures s occur with Boltzmann equilibrium probability P(s) where

P(s) =
e−

F(s)
RT

Q
(2.37)
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Representative samples are then chosen by their probability P(s) and a successive

run of this sampling method generates a set of suboptimal secondary structures.

An algorithm which implements this sampling was described in [12, 13, 29, 56]

and is available as part of the RNAsubopt program in the Vienna RNA Package

[27] and the program Sfold[12].

Similarly to the suboptimal backtracking method of Wuchty et al., the algorithm is

a modification of the original MFE backtracking procedure. But in contrast to both,

the construction of suboptimal structures and structures with minimum free energy,

the partition function Q is calculated in the forward recursion step. Afterwards,

backtracking takes place in the partition function arrays Q, QB, QM and QM1
to

compute a base pairing pattern.

probability decomposition Decomposing a secondary structure s into

substructures si ∈ s leads to a decomposition of the Boltzmann equlibrium

probability P(s) into conditional equilibrium probabilities P(si|sj) of the occurance

of these substructures where si results from a decomposition of sj. When

decomposing the secondary structure in the backtracking process by means of the

recursion scheme in Fig. 13 each possible decomposition D into a substructure si

leads to an equilibrium decomposition probability P(D), where

P(D) =
contribution of D to partition function

partition function
(2.38)

Following the recursivity of the backtracking algorithm and the successive order

of the decompositions a high-dimensional probability distribution arises, which

may make sampling in the Boltzmann ensemble quite difficult. However, the

recursion scheme used is capable of dissecting the problem into subproblems, so

sampling of a secondary structure becomes successive conditional sampling at

lower dimensions. The unique decomposition pattern D∗ = {D1
m1

, . . . , DN
mN

} of

a secondary structure s, where the superscripted integer indicates the recursion

step k and the subscripted variable mk is the chosen decomposition of all possible

decompositions in step k, can then be used to formulate the equilibrium probabil-

ity P(s) by means of the conditional probabilities of the successive decompositions

Dk
mk

.

P(D∗, s) =
∏

Dk
mk

∈D∗

P(Dk
mk

|Dk−1
mk−1

, s) = P(s) (2.39)



2.3 rna folding algorithms 39

At this, the initial probability, thus P(Dk
mk

) with k = 0, is set to 1 as it denotes the

probability to decompose the secondary structure s at all, which is possible in any

case. Furthermore, the recursion scheme makes the decomposition probability

P(Di) according to a certain energy array independant from other decomposition

probabilities P(Dj). This is done by regarding the contribution of Di to the

appropriate partition function Q, QB, QM and QM1
on each interval [i, j] and

leads to an extension of equation (2.38).

P(D, Qi,j) =
contribution of D to Qi,j

Qi,j

P(D, QB
i,j) =

contribution of D to QB
i,j

QB
i,j

P(D, QM
i,j) =

contribution of D to QM
i,j

QM
i,j

P(D, QM1

i,j ) =
contribution of D to QM1

i,j

QM1

i,j

(2.40)

As for a given k each P(Dk
mk

, E) is in range 0 6 P(Dk
mk

, E) 6 1 and
∑

mk
P(Dk

mk
, E) =

1 where E ∈ {Qi,j, QB
i,j, Q

M
i,j , QM1

i,j }, the probabilities P(Dk
mk

, E) can be assigned

to successive intervals of length l = P(Dk
mk

, E) in range [0, 1]. For z possible

decompositions in step k the arrangement would have the form

0 . . . x1︸ ︷︷ ︸
P(D

m1
k
)

. . . x2︸ ︷︷ ︸
P(D

m2
k
)

. . . xz−1 . . . 1︸︷︷︸
P(Dmz

k
)

(2.41)

An equally distributed random value rk with 0 6 rk 6 1 can then be used to

decide which decomposition mk in each recursion step k has to be taken when

backtracking stochastically. Thereby, the decomposition path mk for each energy

array E = {Q, QB, QM, QM1
} on a sequence interval [i, j]E is chosen by means

of its equilibrium probability. This leads to a recursive algorithm following the

scheme depicted in Fig. 13.

• case E = Q

Two different decomposition paths are possible if the interval is related to

the Q energy array. A random value r1 is taken to decide whether base i

can be discarded by regarding it to be unpaired.

r1 ·Qi,j 6 Qi+1,j (2.42)
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If the inequality is met the interval [i + 1, j]Q remaining is backtracked

further.

If (2.42) is not fulfilled, the base at position i must be paired with another

downstream base u with i < u 6 j and the pairing partner u has to be

evaluated. By introducing auxiliary variables Z[u] with

Z[u] = Qi+1,j +
∑

i<v6u

QB
i,v ·Qv+1,j · e−β·(d5

i,v,i−1+d3
i,v,v+1) (2.43)

the pairing partner for base i can be evaluated by determining the position

u that fulfills

Z[u − 1] 6 r1 ·Qi,j < Z[u] (2.44)

Afterwards, the algorithm proceeds by backtracking the two intervals

[i, u]QB and [u + 1, j]Q

• case E = QB

Backtracking in QB leads to 3 different decomposition possibilities origi-

nating from the three forward recursion parts of (2.21). The base pair (i, j)

delimits a hairpin if

r2 ·QB
i,j < e−β·H(i,j) (2.45)

In this case backtracking of [i, j]QB terminates.

For the next possible loop type, interior loops including stacks and bulges, the

base pair (p, q) immediately interior to (i, j) has to be evaluated. Introducing

a function t1(p, q) = (j − i − 1) · (p − i − 1) −
(p−i)·(p−i+1)

2 + q that maps

combinations of pairs (p, q) with i < p < q < j to successive numbers in

the interval [1, n·(n−1)
2 ], auxiliary variables Z[t1(p, q)] with

Z[t1(p, q)] =
∑

i<u6p

∑
p<v6q

e−β·I(i,j,u,v) ·QB
u,v (2.46)

can be used to determine the interior base pair (p, q). In detail, a pair of

positions p and q satisfying

Z[t1(p, q) − 1] 6 r2 ·QB
i,j − e−β·H(i,j) < Z[t1(p, q)] (2.47)
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is regarded as the interior base pair of the 2 − loop with closing pair (i, j)

and the backtracking procedure proceeds on the interval [p, q]QB .

If none of the previous conditions hold, the interval [i, j]QB is a multiloop

with closing pair (i, j). Corresponding to the unique multi loop decomposi-

tion of (2.21), a position u which splits the interval into two subintervals

[i + 1, u]M and [u + 1, j − 1]M1 has to be found. Again, auxiliary variables

Z[u] with

Z[u] =
∑

i<v6u

QM
i+1,v ·QM1

v+1,j−1 · e
−β·(d5

j,i,j−1+d3
j,i,i+1) (2.48)

and a further variable Zaux with

Zaux = e−β·H(i,j) −
∑

i<p<q<j

e−β·I(i,j,p,q) ·QB
p,q (2.49)

are used to determine this position u that has to fulfill

Z[u − 1] < r2 ·QB
i,j − Zaux 6 Z[u] (2.50)

The resulting subintervals [i + 1, u]QM and [u + 1, j − 1]
QM1 are backtracked

further.

• case E = QM

The decomposition of substructures on an interval [i, j]QM leads to three

possibilities. The first is, that base j does not pair with any other base u

with i 6 u < j and therefore can be nibbled:

r3 ·QM
i,j < QM

i,j−1 · e−β·c (2.51)

This leads to the evaluation of the remaining interval [i, j − 1]QM in the next

recursion step.

According to the recursion scheme, the second possibility is that there exists

a split point u dividing the interval into a rightmost part with exactly one

stem and a left part containing (u − i) unpaired bases. This split point is

determined by introducing variables Z[u] with

Z[u] =
∑

i<v<u

QB
v,j · e−β·((v−i)·c+b) · e−β·(d5

v,j,v−1+d3
v,j,j+1) (2.52)
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and finding the position u with

Z[u − 1] 6 r3 ·QM
i,j − QM

i,j−1 · e−β·c < Z[u] (2.53)

Here, the remaining interval [u, j]QB has to be backtracked in the next step.

In case that no u fulfilling (2.53) is found, the last possibility holds. It states

that there is a position u ′ separating the interval [i, j] into a rightmost part

with exactly one stem with closing pair (u ′, j) and a left part with at least

one additional stem in the interval [i, u ′ − 1]. Using Z[u ′] with

Z[u ′] =
∑

i<v6u ′

QM
i,v−1 ·QB

v,j · e−β·b · e−β·(d5
v,j,v−1+d3

v,j,j+1) (2.54)

and Zaux with

Zaux = QM
i,j−1 · e−β·c

+
∑

i<u<j

QB
u,j · e−β·((u−i)·c+b) · e−β·(d5

u,j,u−1+d3
u,j,j+1) (2.55)

this position u ′ has to meet the condition

Z[u ′ − 1] < r3 ·QM
i,j − Zaux 6 Z[u ′] (2.56)

and leads to a backtracking of the intervals [i, u ′ − 1]QM and [u ′, j]QB .

• case E = QM1

Two inequalities have to be tested if an interval [i, j]
QM1 is related to the

QM1
array. First, j may be unpaired and can therefore be nibbled, which is

checked by

r4 ·QM1

i,j < QM1

i,j−1 · e−β·c (2.57)

resulting in the interval [i, j − 1]
QM1 for further backtracking.

Second, j may form a base pair with i and the interval [i, j]QB is backtracked

in the next step.

r4 ·QM1

i,j 6 QM1

i,j−1 · e−β·c

+ QB
i,j · e

−β·(b+d5
i,j,i−1+d3

i,j,j+1) (2.58)
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At the end of this stochastic backtracking process the base pairing pattern found

constitutes a secondary structure s sampled with probability P(s). As mentioned

before, a successive run of this algorithm produces a set of suboptimal secondary

structures.

2.3.4 Folding of Aligned RNA Sequences

Considering functional RNA molecules like rRNA, tRNA, small nuclear RNA

(snRNA), miRNA, viroids and many others, it is evident that they exhibit char-

acteristic secondary structures which are conserved over clusters of the family

they belong to. Creating sequence alignments of such sets of RNA sequences to

study the phylogenies is widely used in bioinformatic applications [14]. This for

example leads to a better understanding of the ancestral relationships of coding

mRNA or noncoding tRNA in an interspecies perspective. Another possibility

arises by creating an alignment of a collection of RNA sequences. It allows the

prediction of a consensus secondary structure, especially for functional RNAs

whose secondary structure motifs seem to be well conserved in evolution, e.g.

the cloverleaf structure of tRNA.

An algorithm for the computation of consensus structures from a set of aligned

sequences was presented in 2002 by Hofacker et al., combining phylogenetic

sequence covariations and thermodynamic stability of RNA molecules into a

modified energy model [26]. In contrast to other approaches, their ansatz mini-

mizes the computational effort by allowing to run the algorithm only once for a

given alignment. This speeds up calculation especially for alignments of larger

sequences. Furthermore it provides a reasonable way for testing the reliability of

predictions by providing the base-pairing probability matrix instead of the MFE

structure or a set of suboptimal folds.

sequence covariation Mutations in an RNA sequence which disrupt

Watson-Crick base pairs have negative effects as they may prevent the sequence

to fold into its desired spatial structure. However, a loss of a base pair can

be overcome by a second - so called compensatory mutation - restoring the base

pair. This kind of two consecutive mutations creates patterns of nucleotide

substitutions which are called covariations. Such patterns can be detected in
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interspecies sequence alignments of homologous RNAs, where the potential of

forming a base pair is retained while sequence similarities are lost. For example,

the replacement of a GC pair with an AU pair is a covariation.

For measuring the covariance of two sequences λ and µ in an alignment A of N

sequences, Hofacker et al. first formulated the Hamming distance d
λ,µ
i,j of the

base pairs (i, j)λ and (i, j)µ

d
λ,µ
i,j = 2 − δ(aλ

i , aµ
i ) − δ(aλ

j , aµ
j ) (2.59)

where δ(a ′, a ′′) = 1 if a ′ = a ′′ and δ(a ′, a ′′) = 0 otherwise. This distance

measure is able to distinguish between conserved base pairs as well as pairs with

consistent mutations and compensatoric mutations. So if d
λ,µ
i,j = 0, position i

and j in the aligned sequence λ match with position i and j of sequence µ. If

they differ in exactly one position d
λ,µ
i,j = 1 and d

λ,µ
i,j = 2 if they differ in both

positions.

Introducing matrices
∏α where

∏α
i,j = 1 if base i may pair with j in the aligned

sequence α ∈ A and
∏α

i,j = 0 otherwise, a measure of covariation is

Ci,j =
1(
N
2

) · ∑
λ<µ

d
λ.µ
i,j ·

∏λ

i,j
·
∏µ

i,j

=
∑

XY,X ′Y ′

fi,j(XY) ·DXY,X ′Y ′ · fi,j(X
′Y ′)

= 〈fi,jDfi,j〉 (2.60)

D is a 16 × 16 matrix with entries DXY,X ′Y ′ = dH(XY, X ′Y ′) if XY ∈ B and

X ′Y ′ ∈ B and DXY,X ′Y ′ = 0, otherwise. The capital letters {X, Y, X ′, Y ′} ∈ Σ

designate the bases X and Y replaced by bases X ′ and Y ′ using the alphabet

Σ = {A, G, C, U} and dH(XY, X ′Y ′) is the Hamming distance between the base

pairs as denoted in (2.59). Therefore D is the distance matrix for each base pair

substitution. XY ∈ B indicates that X may pair with Y and the function fi,j(XY)

computes the frequency of finding X in i and Y in j in the complete alignment

A. As shown in the second and third line of (2.60), this covariance measure is a

scalar product and thus can be evaluated efficiently.

Even though the covariance score Ci,j gives a bonus to compensatory mutations,

it does not deal with sequences where no base pair can be formed between

position i and j, e.g. due to an inserted gap or a mismatch. A simple extension to
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take these cases into account is to count the number of sequences where i, j is a

combination of a nucleotide with a gap as it indicates an inconsistent mutation.

Whereas gaps in both positions i and j are ignored, as they may constitute a

deletion of an entire base pair (i, j) that, in some cases, does not disrupt the

structure motif.

qi,j = 1 −
1

N
·
∑
α

{∏α

i,j
+δ(aα

i , gap) · δ(aα
j , gap)

}
(2.61)

Combining (2.60) and (2.61) leads to the combined covariation score Bi,j with

Bi,j = Ci,j − φ1 · qi,j (2.62)

The factor φ1 represents the relative weight of inconsistent sequences and defaults

to 1.0.

In contrast to the previously discussed folding algorithms, where the evaluation of

the base pairing energy contribution of a possible base pair (i, j) always depends

on the ability to form a Watson-Crick or GU pair between position i and j in the

single RNA sequence, the pairing between position i and j depends on all bases

(aα
i , aα

j )∀α ∈ A when computing a consensus structure. It is convenient to define

a threshold value B∗ which indicates whether the energy contribution of a pair

of base positions is taken into account when evaluating the consensus structure

or not. Using B∗ for all positions i, j with i < j the upper triangle of the pairing

matrix
∏A with

∏A

i,j
=

 0 if Bi,j < B∗

1 if Bi,j > B∗
(2.63)

is filled and used in the following recursion steps.

The definitions above allow an extension of the loop-based energy model to deal

with alignments of sequences. Therefore each energy contribution Ei,j in the

recursion scheme of equation (2.5)-(2.8) becomes an energy contribution of the

complete alignment EA
i,j with

EA
i,j =

1

N
·

∑
α∈A

ε(aα
i , aα

j ) − φ2 ·Bi,j (2.64)

Considering an alignment of N sequences, the total energy contribution EA
i,j then

is the average of the energy contributions ε(aα
i , aα

j ) of base pair (aα
i , aα

j ) in each
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sequence α plus the covariance contribution Bi,j where the latter is weighted by

factor φ2 [26].

partition function of aligned sequences Using (2.64), the partition

function algorithm (2.21) on page 30 can easily be extended to take aligned

sequences into account. The main difference then is the evaluation of the energy

contribution QAB
i,j which is 0.0 if position i does not form a base pair with j in

the alignment context, indicated by
∏A

i,j = 0. The factors ρ = 1
RTN and β = 1

RT

are used to simplify the recursive equations.

QA
i,j = 1 +

∑
i<u6j

QAB
i,u ·QA

u+1,j · e
−ρ·

∑
α∈A d5

iα ,uα ,(i−1)α
+d3

iα ,uα ,(u+1)α (2.65)

QAB
i,j = eρ·φ2·Bi,j ·

{
e−ρ·

∑
α∈A H(iα,jα)

+
∑

i<p<q<j

QAB
p,q · e−ρ·

∑
α∈A I(iα,jα,pα,qα)

+
∑

i<u<j

QAM
i+1,u ·QAM1

u+1,j−1 · e−β·(a+b) ·
{

e
−ρ·

∑
α∈A d3

jα ,iα ,(i+1)α
+d5

jα ,iα ,(j−1)α

}}
(2.66)

QAM
i,j = QAM

i,j−1 · e−β·c

+
∑

i<u<j

QAB
u,j · e−β·(b+(u−i)·c) ·

{

e
−ρ·

∑
α∈A d5

uα ,jα ,(u−1)α
+d3

uα ,jα ,(j+1)α

}
+

∑
i<u<j

QAB
u,j ·QAM

i,u−1 · e−β·b ·
{

e
−ρ·

∑
α∈A d5

uα ,jα ,(u−1)α
+d3

uα ,jα ,(j+1)α

}
(2.67)
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QAM1

i,j = QAM1

i,j−1 · e−β·c

+ QAB
i,j · e−β·b · e−ρ·

∑
α∈A d5

iα ,jα ,(i−1)α
+d3

iα ,jα ,(j+1)α (2.68)

Beginning with all pentanucleotide sequences [1, 5]A to [n − 4, n]A the algorithm

again fills the energy matrices QA, QAB, QAM and QAM1
, inceasing the sequence

length gradually until the complete alignment [1, n]A has been processed, which is

common to the forward recursions of all previously described folding algorithms

in this section. The partition function QA of the complete alignment A is located

at QA
1,n as usual.

base pairing probabilities of aligned sequences Originating from

the four partition function arrays filled by the recursions above, the base pairing

probability matrix of the aligned sequences can be obtained. Therefore the

backward recursion (2.23) has to be extended in the same way as the forward

recursion, leading to

PA lin
i,j =

QA
1,i−1 ·QAB

i,j ·QA
j+1,n

QA
1,n

· eρ·φ2·Bi,j

· e−ρ·
∑

α∈A d5
iα ,jα ,(i−1)α

+d3
iα ,jα ,(j+1)α (2.69)

for the contribution of secondary structures enclosed by (i, j) that are not enclosed

by any other base pair (p, q) with p < i < j < q. Taking the contribution of all

secondary structures where (i, j) is enclosed by such a base pair (p, q) into account

too, the complete recursion to obtain the equilibrium base pairing probability of



48 background

the aligned sequences leads to

PA
i,j = PA lin

i,j

+ eρ·φ2·Bi,j ·

{
∑

p<i<j<q

PA
p,q ·

QAB
i,j

QAB
p,q

· e−ρ·
∑

α∈A I(pα,qα,iα,jα)

+
∑
p<i

QA
i,j · e−β·(a+b) ·

{

+
∑
q>j

PA
p,q

QAB
p,q

· e−β·(q−j−1)·c ·QAM
p+1,i−1 · {

e
−ρ·

∑
α∈A d5

qα ,pα ,(q−1)α
+d3

qα ,pα ,(p+1)α }

+
∑
q>j

PA
p,q

QAB
p,q

·QAM
j+1,q−1 · e−β·(i−p−1)·c · {

e
−ρ·

∑
α∈A d5

qα ,pα ,(q−1)α
+d3

qα ,pα ,(p+1)α }

+
∑
q>j

PA
p,q

QAB
p,q

·QAM
j+1,q−1 ·QAM

p+1,i−1 · {

e
−ρ·

∑
α∈A d5

qα ,pα ,(q−1)α
+d3

qα ,pα ,(p+1)α }

}}
(2.70)

The third line of (2.70) shows contributions by interior loops and beginning in the

fourth line multi loop contributions where (i, j) delimits the most 3 ′, the most 5 ′

or an intermediate branch are handled.
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F O L D I N G O F C I R C U L A R R N A S ( I )

Circular RNAs differ from linear ones in that the first and the last nucleotide

are covalently bound, forming an unbroken chain. This leads to a problem in

consecutive numbering of their nucleotides, because circles have no beginning.

However, one can arbitrary pick one base and denote it to be the first base for

writing down the RNA sequence. The direction of numbering from the 5 ′− to the

3 ′− end is uniquely defined as for linear RNAs. Secondary structures of circular

RNAs can be defined as in definition 2.1 with the difference that the first and last

base may not pair with each other as they are adjecent in the ring molecule.

Simply cutting the circular RNA at an arbitrary point and treating it as linear RNA

in secondary structure prediction was found to be highly cut point dependant [54],

so the exisiting folding algorithms had to be extended. The first ansatz of Hofman

[54] deals with circular RNAs using a modification of the dynamic programming

algorithm of Zuker and Stiegler [74] as discussed in 2.3. For each subsequence

[i, j] not only the minimal folding energy V(i, j) and W(i, j) is computed, but also

the minimum free energy of the so called exterior loop from j to i by evaluating

V(j, i) and W(j, i). Afterwards, the minimum folding energy of the circular RNA

can be obtained with

min
i<j

{V(i, j) + V(j, i)} (3.1)

Compared to the prediction of a secondary structure of a linear RNA of the

same size, this algorithm doubles the computation time as well as the memory

requirements.

3.1 zuker’s algorithm

Another method which is used in Zukers mfold package, doubles the length of

the sequence to 2n by concatenating the sequence [1, n] on itself [73]. This results

49
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in a sequence where the nucleotides n + 1, . . . , 2n are the same as 1, . . . , n. After

introducing a new condition that V(i, j) = ∞, if j − i > n − 2, the linear folding

algorithm (2.2) is applied to the expanded sequence. Then, assuming that the

secondary structure contains at least one base pair (i, j), the minimum free energy

can be obtained by

min
i<j

{V(i, j) + V(j, i + n)} (3.2)

which quadruples the memory requirements and roughly triples computation

time compared to a linear RNA of the same size. In practice, parts of the matrix

do not have to be evaluated due to a partial repetition of the matrix entries. At

any rate, this algorithm leads to at least a doubling of the memory requirements

and a doubling of computation time.

3.2 memory efficient algorithm

In 2005, Hofacker et al. [28] presented an algorithm which extends the linear

folding to take circular RNAs into account by application of a kind of post-

processing step. The key observation for the idea of this post-processing step was

that the only difference between the handling of linear and circular sequences

is the treatment of the exterior loop which contains the bases 1 and n. In the

linear case, the exterior loop does not contribute any energy whereas in the

circular case it has to be treated like any other kind of loop. The precalculated

energy arrays of the linear forward recursion are used to calculate the energy

contribution of these exterior loops. This memory efficient method allows to

compute the structural differences between linear and circular RNAs running

the linear forward recursion only once. The extension of the MFE algorithm as

presented in their article [28] serves as a pattern for other folding algorithms

discussed in the next chapter.

post-processing When regarding exterior loops like any other loop in the

circular sequence, their types also have to be distinguished. Hence, exterior
hairpin loops, exterior interior loops and exterior multi loops occur. After filling the

arrays F, C, M and M1, the energy contribution of these loop types are obtained

by evaluating the optimal energy of (a) hairpin structures Fo
H, (b) interior loop
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structures Fo
I and (c) multi loop structures Fo

M containing bases 1 and n in their

loop.

If the exterior loop is a hairpin, there is a base pair (j, i) with 1 6 i < j 6 n

closing the loop and giving rise to l = i − 1 + (n − j − 1) unpaired bases, where l

is the length of the loop. The minimal energy of such an exterior hairpin loop is

Fo
H = min

16i<j6n

{
Ci,j + H(j, i)

}
(3.3)

and can be calculated in O(n2) without additional memory requirements.

Exterior interior loops contain two closing pairs (j, i) and (p, q) constituting the

closing pairs of two components with minimal free energy Ci,j and Cp,q. Their

optimal energy is

Fo
I = min

16i<j<p<q6n

{
Ci,j + Cp,q + I(j, i; q, p)

}
(3.4)

and can be obtained in time proportinal to O(n3) by limiting the total number

of unpaired bases l, as for regular interior loops in the linear case, without

additional memory requirements, too. The total length l = l1 + l2 is composed of

the number of unpaired bases on both sides l1 = n − q + i − 1 and l2 = p − j − 1.

The last type, exterior multi loops, are loops with at least 3 stems on the sequence

[1, n]. Therefore, an auxilary energy array M2 is used that contains the energy

contribution of multi loop parts with exactly two stems. M2
k,n is filled based

on energy contributions of multiloop stems with exactly one stem (M1) on the

subsequence [k, n].

M2
k,n = min

k<u<n

{
M1

k,u + M1
u+1,n

}
(3.5)

With this linear array, that requires O(n) additional memory, the minimal energy

of exterior multi loops can be calculated proportional to O(n2) in time. Using the

M array, multi loops with at least three stems are composed by a part with exactly

two stems (M2) at the end of the sequence and another part with at least one

stem (M) at the beginning of the sequence, leading to the equation

Fo
M = min

1<k<n

{
M1,k + M2

k,n + a
}

(3.6)
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The minimal free energy of the folded complete circular sequence is then the

minimum of the three possibilities for exterior loops

Fo = min {Fo
H, Fo

I , Fo
M} (3.7)

A graphical visualization of the exterior loop decomposition can be found in Fig.

14.
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Figure 14: According to the loop types that contain bases 1 and n, a circular fold can be
decomposed into three cases:
An exterior hairpin loop with closing pair (q, p) and enclosed interval [p, q]C or
an exterior interior loop with closing pairs (p, q), (k, l) and enclosed intervals
[p, q]C and [k, l]C are the first two of them. In the multi loop case, there have to
be at least three stems, assured by the auxilary array M2 which is obtained by
concatenation of two structures with exactly one stem in the intervals [k, u]M1

and [u + 1, n]M1 . The exterior multi loop then consists of an interval [1, k]M

with at least one stem and an interval [k + 1, n]M2 with exactly two stems.

backtracking Backtracking a circular secondary structure reverses the post-

processing into a pre-processing step. This step has to be performed before the

normal backtracking procedure for linear structures as in 2.3.1 on page 26 can be

applied. Hence, the optimal exterior loop type has to be determined.

If Fo = Fo
H, the exterior loop is a hairpin and its closing pair (i, j), satisfying

Fo
H = Ci,j + H(j, i) (3.8)
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has to be found. This step needs computation time proportional to O(n2). In the

next step, backtracking of the subsequence [i, j]C follows the regular backtracking

procedure for linear structures.

An exterior interior loop is present if Fo = Fo
I holds. In this case, the two base pairs

(i, j) and (p, q) which close the 2-loop have to be determined.

Fo
I = Ci,j + Cp,q + I(j, i; q, p) (3.9)

Constraining the total loop length l as in the post-processing step, the search for

both closing pairs needs time proportinal to O(n3) and the subsequences [i, j]C
and [p, q]C have to be backtracked as in the linear case.

The exterior loop is a multi loop if Fo = Fo
M. In such a case, the first step is to

find the position k which separates the multi loop into a left part with at least

one stem and a right part with exactly two stems.

Fo
M = M1,k + M2

k,n + a (3.10)

Once the position k is determined, the substructure with exactly two stems has to

be split into two substructures representing exactly one stem each. This is done

by looking for the separation position u which has to satisfy

M2
k,n = M1

k,u + M1
u+1,n (3.11)

The remaining subsequences [1, k]M, [k, u]M1 and [u + 1, n]M1 are treated like

linear ones in the further backtracking steps following the backward recursions

in 2.3.1 on page 26 again. All found base pairs constitute the secondary structure

of the circular RNA sequence.





4
F O L D I N G O F C I R C U L A R R N A S ( I I )

The memory efficient circular extension of the MFE algorithm discussed in the

previous chapter can be applied to other folding algorithms too. An easy exten-

sion is possible if the folding algorithms follow the recursion scheme depicted in

Fig. 13 on page 25. As all folding algorithms previously discussed are already

converted into this scheme, their extension to take circular RNA sequences into

account can also be treated by the application of a post-processing step in the

forward- and a pre-processing step in the backward-recursions. This opens the

chance to investigate circular RNA sequences and even alignments of them in the

same way as linear RNAs.

4.1 partition function

The partition function Qo of a circular RNA sequence can now be calculated in

the same way as the MFE by applying a post-processing step. As the recursions

(3.3) - (3.6) already provide a partition of the set of all secondary structures, their

modification is straightforward.

QM2

k,n =
∑

k<u<n

QM1

k,u ·QM1

u+1,n (4.1)

Qo
H =

∑
16i<j6n

QB
i,j · e−β·H(j,i) (4.2)

Qo
I =

∑
i<j<p<q

QB
i,j ·QB

p,q · e−β·I(i,j;p,q) (4.3)

Qo
M =

∑
k

QM
1,k ·QM2

k+1,n · e−β·a (4.4)

Qo = Qo
H + Qo

I + Qo
M (4.5)

base pairing probabilities Calculating the equilibrium base pairing prob-

abilities Pi,j of the circular RNA sequence differs in the calculation of the contri-
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bution of the exterior loop the base pair (i, j) is part of. In the linear case (2.23) this

contribution is handled by the term Plin
i,j where the exterior loop with a closing pair

(i, j) does not contribute any energy. The complete equation for the calculation of

Plin
i,j can also be formulated in the following way to take the Boltzmann weighted

energy contribution e
0

RT = 1 of the (non existant) exterior loop into account.

Plin
i,j =

Q1,i−1 ·QB
i,j ·Qj+1,n · 1

Q1,n
(4.6)

In the circular case, there are several different exterior loops possible so their

contribution plays an important role in the computation of the equilibrium base

pairing probability. A replacement of the term Plin
i,j by a contribution Pcirc

i,j that

takes all possible exterior loops into account allows an easy extension of the

recursions in (2.23). The equilibrium base pairing probability Pi,j of a circular

sequence can then be calculated by the recursive equation

Pi,j = Pcirc
i,j

+
∑

p<i<j<q

Pp,q ·
QB

i,j

QB
p,q

· e−β·I(p,q,i,j)

+
∑
p<i

Qi,j · e−β·(a+b) ·

{
∑
q>j

Pp,q

QB
p,q

· e−β·((q−j−1)·c+d5
q,p,q−1+d3

q,p,p+1) ·QM
p+1,i−1

+
∑
q>j

Pp,q

QB
p,q

·QM
j+1,q−1 · e

−β·((i−p−1)·c+d5
q,p,q−1+d3

q,p,p+1)

+
∑
q>j

Pp,q

QB
p,q

·QM
j+1,q−1 ·QM

p+1,i−1 · e
−β·(d5

q,p,q−1+d3
q,p,p+1)

}
(4.7)

As mentioned above, the equilibrium probability Pcirc
i,j has to take into account each

possible exterior loop the base pair (i, j) can be part of. A base pair (i, j) may be the

closing pair of an exterior hairpin loop with contribution of QB
i,j · e−β·H(j,i) to the

partition function Qo, a closing pair of an exterior interior loop giving rise to two

contributions QB
p,q · e−β·I(q,p,j,i) or QB

p,q · e−β·I(p,q,j,i) corresponding to whether

(i, j) delimits the "left" or "right" part of the exterior interior loop. Considering
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exterior multi loops three contributions appear according to the part the base pair

(i, j) delimits. Firstly the base pair may delimit the left most branch of the multi

loop, secondly it may delimit an intermediate part and thirdly the right most part.

These contributions lead to the equation replacing the calculation of the exterior
loop contribution [28]:

Pcirc
i,j =

QB
i,j

Qo
·

{
e−β·H(j,i)

+
∑

p<q<i<j

QB
p,q · e−β·I(q,p,j,i)

+
∑

i<j<p<q

QB
p,q · e−β·I(p,q,j,i)

+QM
1,i−1 ·QM

j+1,n · e−β·(a+b) · ed5
j,i,j−1+d3

j,i,i+1

+
∑
u<k

QM
1,u ·QM1

u+1,i−1 · e
−β·(a+b+(n−u)·c) · ed5

j,i,j−1+d3
j,i,i+1

+
∑
u>l

QM
u+1,n ·QM1

j+1,u · e−β·(a+b+(i−1)·c) · ed5
j,i,j−1+d3

j,i,i+1

}
(4.8)

4.2 suboptimal secondary structures

Complete suboptimal folding and stochastic backtracking as discussed in the previous

chapters follow the recursion scheme in figure 13. So, they can also be extended to

take circular RNA sequences into account. This enables the investigation of their

energy landscape [68], e.g. for viroid sequences, and the design of multistable

RNA molecules [15].

4.2.1 Complete suboptimal folding

The modification of the backtracking algorithm for finding all suboptimal sec-

ondary structures discussed in 2.3.3 is straight-forward. The pre-processing step

alters the condition that E = F of this linear backtracking process as this is the
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point where energy contributions of the exterior loop play a role. In detail, the

recursions of this condition have to be replaced by the evaluation of the exterior

loop type(s). Of course, the appropriate energy variables Fo
H, Fo

I and Fo
M and

also the energy array M2
k,n have to be filled in the forward recursion. The pre-

processing step then is used to find all possible exterior loops where the energy

contribution of the exterior and the interior loop is in range δ from the minimum

free energy.

pre-processing The first exterior loop type which may arise is the exterior

hairpin and will be considered if Fo
H 6 Emin + δ. To find all exterior hairpins and

their enclosed interior structure constituting a suboptimal secondary structure,

all possible base pairs (i, j) with i < j closing the hairpin have to be determined.

Each found base pair (i, j) satisfying equation (4.9) then leads to the refinement
S ′ = ([i, j]C.σ, P, ELS

+ H(j, i)) which is pushed on the partial structure stack R.

H(j, i) + Ci,j 6 Emin = δ (4.9)

If Fo
I 6 Emin +δ holds, the second possible exterior loop type is treated. Therefore

all possible closing pairs (i, j) and (p, q) with i < j < p < q are evaluated.

Each pair of base pairs fulfilling equation (4.10) results in a refinement S ′ =

([i, j]C.[p, q]C.σ, P, ELS
+ I(j, i, q, p)) pushed on stack R.

I(j, i; q, p) + Ci,j + Cp,q 6 Emin + δ (4.10)

That a suboptimal secondary structure with an exterior multi loop exists is

obvious if Fo
M 6 Emin + δ. In this case two steps have to be done according

to the post-processing step in the forward recursion. First, all positions k with

1 < k < n satisfying

M1,k + M2
k+1,n + a 6 Emin + δ (4.11)

must be investigated. Accepted positions k lead to a further decompostion of the

substructure with exactly two stems of the multi loop in the interval [k + 1, n].

Therefore the position u with k + 1 < u < n which splits this substructure into

two substructures each with exactly one stem has to be found. Each u where

M1,k + M1
k+1,u + M1

u+1,n + a 6 Emin + δ (4.12)
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holds gives rise to a partial structure S ′ = ([1, k]M.[k+1, u]M1 .[u+1, n]M1σ, P, ELS
+

a).

Each refinement of all generated partial structures S ′ pushed on R during the

exterior loop determination is covered by the linear suboptimal backtracking

algorithm of Wuchty et al. [69]. After performing the pre-processing step,

the regular suboptimal backtracking follows, generating a base pair pattern of

suboptimal secondary structures of a circular RNA sequence.

4.2.2 Stochastic backtracking

pre-processing Extending the stochastic backtracking algorithm introduced

in 2.3.3 on page 37 leads to two modifications. The first modification replaces

the case where E = Q with the pre-processing step to find an exterior loop.

The second modification is the introduction of a new case E = QM2
as there

appear sequence fragments [k, n]
QM2 which belong to the linear QM2

array in the

pre-processing step. This newly introduced case is used to sample a statistically

representative decomposition of a structure element with exactly two components

on the interval [k, n] constituting a part of the exterior multi loop. Reverting

recursion (4.1) which fills the partition function array QM2
leads to

r5 ·QM2

k,n 6
∑

k<u<n

QM1

k,u ·QM1

u+1,n (4.13)

where r5 is a random number with 0 6 r5 6 1. By introducing variables Z[u]

with

Z[u] =
∑

k<v6u

QM1

k,v ·QM1

v+1,n (4.14)

the stochastically sampled cutpoint between two components is a position u with

Z[u − 1] < r5 ·QM2

k,n 6 Z[u] (4.15)

The remaining sequence intervals [k, u]M1 and [u + 1, n]M1 then have to be

backtracked in the next step following the linear stochastic backtracking algorithm

again.
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The pre-processing step that replaces the case E = Q of the linear stochastic

backtracking algorithm samples one of the three possible exterior loop types.

Following equation (2.38) the equilibrium probabilities for forming an exterior
hairpin Po

H, an exterior interior loop Po
I or an exterior multi loop Po

M then are

Po
H =

Qo
H

Qo

Po
I =

Qo
I

Qo

Po
M =

Qo
M

Qo
(4.16)

Using a random number r6 with 0 6 r6 6 1 the exterior loop is assumed to be a

hairpin if

r6 ·Qo < Qo
H (4.17)

In this case the closing pair (j, i) of this hairpin has to be determined. Therefore,

the Boltzmann weighted energy contributions of all possible exterior hairpin

loops are successively added up until the first pair (i, j), fulfilling equation (4.20),

is found.

r6 ·Qo <
∑
i<j

QB
i,j · e−β·H(j,i) (4.18)

Using a mapping function t2(i, j) with t2(i, j) = n · (i − 1) − i2+i
2 + j and auxiliary

variables Z[t2(i, j)] with

Z[t2(i, j)] =
∑
i<j

QB
i,j · e−β·H(j,i) (4.19)

this base pair (i, j) has to meet the following condition:

Z[t2(i, j) − 1] 6 r6 ·Qo < Z[t2(i, j)] (4.20)

As soon as this pair is determined, sampling of the exterior loop terminates and

the resulting (interior) sequence fragment [i, j]QB is backtracked stochastically.

Whenever equation (4.17) is false, the next possible loop type is tested. The

statistically representative secondary structure contains an exterior interior loop if

r6 ·Qo < Qo
H + Qo

I (4.21)
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Is this case, both closing pairs (i, j) and (p, q) separating the enclosed intervals

[i, j]QB and [p, q]QB have to be discovered.

Similarly to the previous loop type the Boltzmann weighted energy contributions

of all possible exterior interior loops and their enclosed intervals are summed up

until the first pair of base pairs matching

r6 ·Qo − Qo
H <

∑
i<j<p<q

QB
i,j ·QB

p,q · e−β·I(i,j;p,q) (4.22)

is detected. Again, a function t3(i, j, p, q) that maps the loop cycles of
∑

i<j<p<q

to consecutive natural numbers can be constructed. Utilizing this function t3,

auxiliary variables Z[t3(i, j, p, q)] with

Z[t3(i, j, p, q)] =
∑

i ′6i<j ′6j<p ′6p<q ′6q

QB
i ′,j ′ ·QB

p ′,q ′ · e−β·I(i ′,j ′;p ′,q ′)(4.23)

can be filled. The base pairs (i, j) and (p, q) wanted are determined if they fulfill

the next inequality:

Z[t3(i, j, p, q) − 1] 6 r6 ·Qo − Qo
H < Z[t3(i, j, p, q)] (4.24)

In the next recursion step, the remaining intervals [i, j]QB and [p, q]QB are back-

tracked further.

If neither (4.17) nor (4.21) are true, the exterior loop has to be a multi loop.

To sample a statistically representative exterior multi loop, a split point k that

separates a rightmost part with exactly two stems from the left part with at least

one stem has to be determined. Regarding the energy contributions of exterior

multi loops Qo
M and its construction, the equilibrium probabilities Pk for each

possible split point k is

Pk =
QM

1,k ·QM2

k+1,n

Qo
M

(4.25)

Thus, using auxiliary variables Z[k] with

Z[k] =
∑
v6k

QM
1,v ·QM2

v+1,n (4.26)

and a further random number r7 a split point k has to fulfill the following

condition:

Z[k − 1] < r7 ·Qo
M 6 Z[k] (4.27)
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After the position k is found the left part on the subsequence [1, k]QM is back-

tracked further by the regular linear stochastic backtracking recursions. The right

part on subsequence [k + 1, n]
QM2 is backtracked according to recursion (4.15).

4.3 consensus structure of aligned sequences

Alignments of circular RNA sequences are quite difficult to compute due to the

arbitrary start point of each sequence. Nevertheless, the program cyclope [43]

provides such circular alignments which opens up the investigation of consensus

structures especially for viroids or classes of viroids. Particularly the computation

of the partition function for the circular alignment QAo and the resulting ability

to compute the base pairing probabilities are of great interest.

4.3.1 Partition function

The already discussed partition function algorithm for aligned RNA sequences of

section 2.3.4 can also be easily extended to take circular alignments into account

using the post-processing scheme of 3.2. Therefore the recursions for the energy

contributions of the exterior loops have to be altered according to equation (2.64).

post-processing The first step in the post-processing prepares the evalu-

ation of exterior multi loops by the construction of the auxiliary linear energy

array QAM2
. As multi loop parts with exactly two stems are derived by the

concatenation of two parts with exactly one stem the recursion to fill QAM2

remains trivial.

QAM2

k,n =
∑

k<u<n

QAM1

k,u ·QAM1

u+1,n (4.28)

The energy contributions of exterior hairpin loops can also be extended easily to

take all sequences in the alignment into account. Therefore the weighted energy

contributions over all sequences have to be summed up. As the covariance

contribution eρ·φ2·Bi,j with ρ = 1
RTN of each closing base pair (i, j) is already

added in the energy contribution QAB
i,j , it does not have to be treated again. The
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extended recursion can now be formulated as

QAo
H =

∑
16i<j6n

QAB
i,j · e−ρ·

∑
α∈A H(jα,iα) (4.29)

Applying the same method to the recursion for the exterior interior loop contribu-

tion results in the following extended equation.

QAo
I =

∑
i<j<p<q

QAB
i,j ·QAB

p,q · e−ρ·
∑

α∈A I(iα,jα,pα,qα) (4.30)

Considering exterior multi loops, equation (4.4) can be extended without additional

modifications.

QAo
M =

∑
k

QAM
1,k ·QAM2

k+1,n · e−β·a (4.31)

Using the memory efficient post-processing step, the partition function of the circular

alignment QAo then is obtained by summation of the loop type dependent

partition functions QAo
H , QAo

I and QAo
M .

QAo = QAo
H + QAo

I + QAo
M (4.32)

base pairing probabilities Calculating the equilibrium base pairing prob-

abilities PAo
i,j of the aligned circular RNA sequences differs in the calculation of

the contribution of the exterior loop the base pair (i, j) is part of. As this contri-

bution is covered by PA lin
i,j in recursion (2.70) only this term has to be altered.

Similarly to the calculation of the equilibrium base pairing probability for circular
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RNAs in 4.7, PA lin
i,j is subsituted by PA circ

i,j with

PA circ
i,j =

QAB
i,j

QAo
· eρ·φ2·Bi,j ·

{
e−ρ·

∑
α∈A H(jα,iα)

+
∑

p<q<i<j

QAB
p,q · e−ρ·

∑
α∈A I(qα,pα,jα,iα)

+
∑

i<j<p<q

QAB
p,q · e−ρ·

∑
α∈A I(pα,qα,jα,iα)

+ QAM
1,i−1 ·QA M

j+1,n · e−β·(a+b) · {

e
−ρ·

∑
α∈A d5

jα ,iα ,(j−1)α
+d3

jα ,iα ,(i+1)α }

+
∑
u<k

QAM
1,u ·QAM1

u+1,i−1 · e−β·(a+b+(n−u)·c) · {

e
−ρ·

∑
α∈A d5

jα ,iα ,(j−1)α
+d3

jα ,iα ,(i+1)α }

+
∑
u>l

QAM
u+1,n ·QAM1

j+1,u · e−β·(a+b+(i−1)·c) · {

e
−ρ·

∑
α∈A d5

jα ,iα ,(j−1)α
+d3

jα ,iα ,(i+1)α }

}
(4.33)
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5.1 implementation

All previously discussed extensions of the folding algorithms in 4 were imple-

mented in C using the source code version 1.6.4 of the ViennaRNAPackage and

will be available in one of its next releases. Details about the implementation are

shown in appendix A.

The circular variants of the discussed algorithms are available by using the

command line parameter -circ to the appropriate programs RNAfold, RNAsubopt

and RNAalifold. The modified manual pages (man pages) for these programs

are listed in appendix B.

5.2 validation

To validate the implemented algorithms in terms of correctness, several testing

scenarios were applied. All of them can be summarized by the principle that

the results of these algorithms were compared with results that appear if the

arbitrary cut point, which designates position 1 of the RNA sequence, is shifted

throughout the complete sequence. If the algorithms work well, each result will

be cut point independent. Specifically, single circular RNA sequences were used

to test the implementation of the partition function, the base pairing probabilities

and the computation of suboptimal secondary structures.

Furthermore, base pairing probabilites and partition function were calculated for

comparison by taking the output of the algorithm of Wuchty et al. [69], which

was set up to generate the complete secondary structure space. This was done for

some random small artificial RNA sequences (up to 60 nucleotides) only because

of the massive rise of possible secondary structures with increasing sequence

length. Testing the reliability of the implemented circular extension of the folding

65
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algorithms for aligned RNA sequences was performed in the same manner, except

for the estimation of the base pairing probabilities, as the algorithm of Wuchty et

al. does not deal with aligned RNA sequences.

All testing scenarios were executed by a collection of perl-scripts, that are avail-

able on request.

5.3 cut-point specificity

As already mentioned in [54] the computation of MFE secondary structures is

highly cut-point dependant. This effect is not limited to the MFE calculations only.

The partition function algorithms for single and aligned RNA sequences as well

as the algorithms for the prediction of suboptimal secondary structures discussed

are highly cut-point dependant, too. This results from the energy contributions of

exterior loops and prohibited structures which are not taken into account without

the circular extension.

To show this dependancy for the two discussed partition function algorithms,

a single RNA sequence (Acc. No. M16826) [22] and 134 PSTVd RNA sequences

taken from the Subviral RNA Database [49] to produce an alignment were used.

The free energies of the ensemble F = −kT · ln(Q) and FA = −kT · ln(QA) were

obtained from RNAfold and RNAalifold with parameters -p -d2 at a default

temperature of 37◦ Celsius. The starting point of the sequence(s) was shifted

throughout the complete genome length. Resulting differences to the predicted

"circular" free energy of the ensemble F◦ = −kT · ln(Qo) and FA◦ = −kT · ln(QAo)

are depicted in Fig. 15 and 16. In both plots a heavy cut-point specificity of F

and FA appears which clearly shows the necessity of an extension of the linear

folding algorithms when investigating circular RNA sequences.

When predicting suboptimal secondary structures this effect can be crucial. Due

to the different MFE for each base used as starting point of the RNA sequence,

the amount of secondary stuctures within a percentage interval arround the MFE

highly differs. This effect is depicted in Fig. 17. As a consequence of the cut-

point dependancy of Q, statistically sampled representative secondary structures,

obtained by the stochastic backtracking algorithm, differ in the distribution of

their free energies as shown in Fig. 18. In this example, 100 samples per cut-point
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Figure 15: Free energy of the ensemble F = −kT · ln(Q) in kcal/mol as a function of the
cut-point of a circular RNA sequence.
Predicted F of PSTVd (Acc. No. M16826) [22] without exterior loop extension rel-
ative to predicted "circular" free energy of the ensemble F◦ = −167.78kcal/mol.

0 20 40 60 80 120 160 200 240 280 320 360

-138
-137
-136
-135
-134
-133
-132
-131
-130
-129
-128

cut point

fre
e 

en
er

gy
 o

f e
ns

em
bl

e

aligned sequences

Figure 16: Free energy of the ensemble FA = −kT ∗ ln(QA) in kcal/mol as a function of
the cut-point of a circular RNA sequence alignment.
Alignment contains 134 sequences of PSTVd obtained from Subviral RNA

database [49]. Depicted is the predicted F without exterior loop exten-
sion relative to the predicted "circular" free energy of the ensemble FA◦ =

−129.14kcal/mol.
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Figure 17: Number of secondary structures within 2% interval arround corresponding
MFE as function of the cut-point.
Circular RNA sequence used is PSTVd (Acc. No. M16826) [22]. Number of
structures without exterior loop extension relative to the amount of 85085

predicted secondary structures when folding with circular extension.

were generated. As expected, the distribution of the free energies per cut-point

are quite homogeneous if the extension for circular RNAs is applied (Fig. 18

left). Without this extension, the cut-point induces shifts in the distribution of

free energies (Fig. 18 right).
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Figure 18: Free energies in kcal/mol of stochastically sampled suboptimal secondary
structures depending on cut-point of circular PSTVd RNA sequence (Acc. No.
M16826) [22].
Left: 100 samples per cut-point with circular option. Right: 100 samples per
cut-point without circular option.





6
C O N C L U S I O N A N D O U T L O O K

RNAs play an important role in living cells. Their capability to operate as

information carrier and to exhibit catalytic activity highlights them for studies of

genotype-phenotype relationships. Circular RNAs like those of viroids which are

suggested to be living fossils of a pre-cellular world [10] are predestined for such

fields of investigation due to their small genome size that merely codes for its

structure, and its concurrent enzymatic activity.

Studying RNA secondary structures yields useful information for the prediction

of tertiary structure, and therefore the interpretation of biochemical interactions of

the molecules. The discussed graph theoretic representation of discrete secondary

structures makes them well compatible to efficient algorithms that compute

thermodynamic quantities like the equilibrium partition function, minimum free

energy of consensus structures or metastable states.

Several so called dynamic programming algorithms exist that, originating from

the loop-based energy model, compute the secondary structure fold of an RNA

sequence or an alignment of RNA sequences under certain thermodynamic cir-

cumstances. In this work, the partition function algorithm and the computation of

equilibrium base pairing probabilities for single RNA sequences and alignments,

the computation of suboptimal secondary structures with a free energy within

an interval around the MFE and stochastic backtracking were formal applied to a

common recursion scheme. Each of these algorithms was extended to not only

take stabilizing base pairing or base pair stacking energies and destabilizing loop

energies into account but also stabilizing contributions of so called dangling ends
that occur if a nucleotide stacks onto an adjacent base pair.

A scheme of memory efficient folding algorithms for circular RNAs was taken

to extend the algorithms discussed for acting on circular RNA sequences. The

resulting algorithms were implemented in C as an extension of the available

secondary structure predicting programs RNAfold, RNAsubopt and RNAalifold of

the ViennaRNAPackage.
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Thus, this work unlocks the application of widely-used secondary structure

prediction algorithms to circular RNA molecules. As an integral part of the

ViennaRNAPackage the RNAsubopt program now opens up the possibility to in-

vestigate the energy landscape of secondary structures of circular RNAs. This

may lead to findings of bi- or multi-stable secondary structure states in silico,

e. g. for viroid RNAs or even for artificially constucted circular RNA aptamers

or riboswitches. The implementation of the memory efficient folding algorithm

scheme for circular RNAs to RNAalifold furthermore facilitates the prediction of

conserved structural elements in viroid families, or other circular RNA families

where not the sequence itself but the adopted secondary structure is conserved.



A
I M P L E M E N TAT I O N

For the implementation of the circularized versions of the suboptimal algorithms,

the partition function for single RNA strands and alignments some changes in

the program code of the ViennaRNAPackage were necessary.

a.1 general changes

To avoid redefinition of functions and variables during the compilation steps, the

headerfile fold_vars.h was modified by enclosing all previous code with:

#ifndef __FOLD_VARS__

#define __FOLD_VARS__

/* previously existing code follows here */

<code>

#endif �
a.2 changes concerning partition function

Obtaining the partition function Q or the base paring probabilities Pi,j of a

given RNA sequence is done with the program RNAfold. Therefore, its source

code had to be modified for the extension with a post-processing step for the

calculation of Qo and pre-processing steps for the determination of Po
i,j and

stochastic backtracking. Although the latter - stochastic backtracking - relates to the

program RNAsubopt that summarizes the algorithms for suboptimal RNA folding

in this package, the implementation of stochastic backtracking is done in the source

code files that constitute RNAfold. The following files were modified.

73



74 implementation

a.2.1 RNAfold.c

Function calls to get MFE and partition function in condition

if(pf){

...

} �
were changed to take circularized version into account.

a.2.2 part_func.c

At the top of this source file some new global variables and function definitions

were added

/* new variables */

int circ = 0;

FLT_OR_DBL qo, qho, qio, qmo, *qm2;

/* new functions */

PUBLIC float pf_circ_fold(char *sequence, char *structure);

PRIVATE void pf_circ(char *sequence, char *structure);

PRIVATE void pf_linear(char *sequence, char *structure);

PRIVATE void pf_create_bppm(char *sequence, char *structure);

PUBLIC char *pbacktrack_circ(char *seq);

static void backtrack_qm(int i, int j);

static void backtrack_qm2(int u, int n); �
Due to the implementation of the post- and pre-processing step some existing

functions had to be modified to reuse as much existing code as possible.

Taking out the forward and backward recursions previously combined in

pf_fold(char *sequence, char *structure) �
into own functions was one of the next modifications. For compatibility with

other parts of the ViennaRNAPackage this function still performs the separated

recursions by calling the two additional new functions

pf_linear(char *sequence, char *structure) /* forward recursion to fill arrays */

pf_create_bppm(char *sequence, char *structure) /* backward recursion to calculate

base paring probabilities */ �
Newly introduced was the function
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pf_circ_fold(char *sequence, char *structure) �
that controls the execution of the linear forward recursion and the post-processing

step afterwards when considering a circular RNA.

For the allocation and freeing of memory used for the auxilary energy array QM2

the existing functions

void get_arrays(unsigned int length) /* Allocation of memory for qm1 and qm2 array in

case of circular folding */

void free_pf_arrays(void) /* Freeing of qm2 array if it was initialized before */ �
were extended, too.

The code inside the newly introduced

pf_linear(char *sequence, char *structure) /* perform forward recursion for linear RNA

*/ �
previously was part of the "old" pf_fold() function. It just implements the forward

recursion to fill all energy arrays. Changes of the exisiting code were done

concerning the allocation of memory for the two arrays that contain the encoded

RNA sequence S and S1. Their length was extended to provide the last base n of

the sequence in front of it (0) and the first base 1 at the end (n + 1). This avoids

exhaustive if-conditions within the code especially when calculating dangling-end

contributions. Additionally, the dangling-end calculations were modified to take

the contribution of base n stacking on base pair (1, i) and base 1 stacking onto

base pair (j, n) into account when analyzing a circular RNA.

The function

void pf_circ(char *sequence, char *structure) /* perform post-processing for circular

RNA */ �
implements the post-processing step as discussed in 4.1. It fills the QM2

array

and also stores the contribution of exterior hairpin loops Qo
H, exterior interior

loops Qo
I and exterior multiloops Qo

M in the appropriate variables qho, qio and

qmo, respectively.

As already mentioned, the computation of the base pairing probability matrix

was externalized to allow a separate call of this backward recursion. Therefore,

pf_create_bppm(char *sequence, char *structure) /* compute base pairing probabilities

*/ �
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was created. It implements previously existing code of the "old" pf_fold() function

with some slight changes. The main modification was done in the calculation of

the contribution of the exterior loop that has to be replaced by the pre-processing

step when considering circular RNAs.

Some of the existing variables and function definitions neccessary for stochastic

backtracking were moved from within the code to the top of the source file.

static void backtrack(int i, int j);

static void backtrack_qm1(int i,int j);

static char *pstruc;

static char *sequence; �
Stochastic backtracking of a secondary structure of a circular RNA sequence also

leads to the chance to reuse the program block that is neccessary for backtracking

in the QM array. This block is now implemented as an own function, namely

static void backtrack_qm(int i, int j) /* was previously part of the function

backtrack(int i,int j) */ �
Other new functions for stochastic backtracking of circular RNA secondary

structures were implemented, too.

char *pbacktrack_circ(char *seq) /* get statistically representative circular RNA

secondary structure */ �
This function backtracks the exterior part of a circular RNA. It calls the regular

backtrack(int i, int j) function for the interior part(s) and returns a statistically

representative secondary structure as char *pbacktrack(int i, int j) does in the linear

case.

Backtracking in the auxilary array QM2
array leads to the following function.

static void backtrack_qm2(int k, int n) /* backtracking in qm2 */ �
It determines the barrier position u between the two concatenated QM1

k,u and

QM1

u+1,n and continues with backtracking in both of the them.
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a.2.3 part_func.h

Previous code inside this header file is now enclosed by

#ifndef __PART_FUNC__

#define __PART_FUNC__

<code>

#endif �
to avoid redefinitions. Additionally the definitions for the newly implemented

functions in part_func.c are added to make them available for other parts of the

ViennaRNAPackage.

extern char *pbacktrack(char *sequence);

extern float pf_circ_fold(char *sequence, char *structure);

extern char *pbacktrack_circ(char *seq); �
a.3 changes concerning suboptimal folding

The ViennaRNAPackage implements two algorithms for the calculation of subop-

timal secondary structures. The algorithm of Wuchty et al. [69] and stochastic
backtracking as introduced in 2.3.3. Both algorithms are available via the program

RNAsubopt.

For the implementation of the pre-processing step that modify these algorithms

to take circular RNA into account as shown in 4.2.1 and 4.2.2, the appropriate

program source has to be modified too.

a.3.1 RNAsubopt.c

Some small modifications were done in this source code file. First, the function

definition

extern char *pbacktrack(char *sequence); �
was removed due to its insertion into part_func.h. Furthermore, in function

int main(int argc, char *argv[]) �
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that controls the program flow, a new state variable

int circ=0; �
was inserted, providing a switch to toggle between the linear and circular al-

gorithm. Along with this, some slight other modifications were neccessary,

controling the function calls according to the selection.

a.3.2 subopt.c

In this file, the complete algorithm of Wuchty et al. [69] is implemented. Accord-

ing to 4.2.1, new definitions of variables and functions in the head of the source

code file were neccessary.

extern int circ;

SOLUTION *subopt_circ(char *seq, char *sequence, int delta, FILE *fp);

int *fM2; /* energies of M2 */

int Fc, FcH, FcI, FcM; /* parts of the exterior loop energies */ �
Modifications were done in

void encode_seq(char *sequence) �
that allocates memory for the RNA sequence containing arrays used and in

int best_attainable_energy(STATE * state) �
where the best attainable energy of all remaining subsequences of the current

state is determined.

Since

SOLUTION *subopt(char *seq, char *structure, int delta, FILE *fp) �
handles the algorithms function call procedure several changes had to be done to

execute the appropriate modifications for circular RNAs.

The pre-processing step that computes the exterior loop contributions as shown

in 4.2.1 was implemented by modifying

void scan_interval(int i, int j, int array_flag, STATE * state) �
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An overloading of SOLUTION *subopt(char *seq, char *structure, int delta, FILE *fp) sets

the external state variable extern int circ = 1; and returns the original function

call afterwards.

SOLUTION *subopt_circ(char *seq, char *structure, int delta, FILE *fp) �
a.3.3 subopt.h

The only modification in this header file was the insertion of the function defini-

tion

extern SOLUTION *subopt_circ (char *seq, char *sequence, int delta, FILE *fp); �
to make it available for other contexts within the ViennaRNAPackage.

Some major changes were done in the source files constituting the implementation

of the circularized MFE algorithm as they are also part of the RNAsubopt program.

a.3.4 fold.c

Forward and backward recursions of the circular MFE algorithm in the ViennaRNAPackage

are implemented in the files fold.c and circfold.inc. To make both of them

available separately as needed for RNAsubopt some former private and also new

variables were introduced as global ones

int circ = 0; /* state variable to toggle circfold ON/OFF */

int *fM2; /* linear auxilary multiloop array M2 */

int Fc, FcH, FcI, FcM; /* exterior loop energies */ �
Existing functions had to be modified, especially due to the memory management

of the arrays used.

void get_arrays(unsigned int size)

void free_arrays(void)

void encode_seq(const char *sequence)

float fold(const char *string, char *structure) �
A new function that allows the memory efficient export of all energy variables

and arrays after the forward recursion of the MFE algorithm including the post-

processing step for circular RNA was implemented, too.
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void export_circfold_arrays(int *Fc_p, int *FcH_p, int *FcI_p, int *FcM_p, int **

fM2_p, int **f5_p, int **c_p, int **fML_p, int **fM1_p, int **indx_p, char **

ptype_p): �
a.3.5 fold.h

To make the new functions available for other programs, linked against the

implementations in fold.c or linked against the provided libRNA that provides

an interface to the folding algorithms, the following function definitions were

added

extern void export_fold_arrays(int **f5_p, int **c_p, int **fML_p, int **fM1_p, int

**indx_p, char **ptype_p);

extern float circfold(const char *string, char *structure);

extern float energy_of_circ_struct(const char *string, const char *structure);

extern void export_circfold_arrays(int *Fc_p, int *FcH_p, int *FcI_p, int *FcM_p,

int **fM2_p, int **f5_p, int **c_p, int **fML_p, int **fM1_p, int **indx_p, char

**ptype_p); �
a.3.6 circfold.inc

Due to the changes in fold.c that assimilated some previously defined variables

and even code fragments of this file, several modifications were required.

a.4 changes concerning alignment folding

As the implementation of the algorithms for computing the partition function

QAo and the base pairing probabilities PAo
i,j , the source code of the program

RNAalifold was modified.

a.4.1 RNAalifold.c

All modifications done in this file are similar to the appropriate ones in RNAfold.c

that arized when modifying the calls of the partition function and the base pairing
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probability algorithm to take circular RNAs into account.

a.4.2 alipfold.c

New variables were applied

int circ=0, *jindx; /* state control switch and index variable */

FLT_OR_DBL qo, qho, qio, qmo, *qm2, *qob; /* energy arrays */ �
to cover the energy contributions of the exterior loop types.

The previously existing function float alipf_fold(char **sequences, char *structure, pair_info

**pi) was split into separate functions for forward and backward recursion similar

to the modification of the partition function for single circular RNA sequences.

Nevertheless, this function can be called as usually before as it internally executes

forward and backward recursion similar to pf_fold(char *sequence, char *structure) of

part_func.c again.

The resulting new functions

float alipf_linear(char **sequences, char *structure) /* fill energy arrays */

void alipf_create_bppm(char **sequences, char *structure, pair_info **pi) /*

calculate base pairing probabilities */ �
are self-explanatory and all modifications of previously existing source code

blocks follow the principles used in the appropriate functions pf_linear(char *

sequence, char *structure) and pf_create_bppm(char *sequence, char *structure) used in the

single-sequence case.

Another resulting new function is

void alipf_circ(char **sequences, char *structure) /* do post-processing for circular

RNAs */ �
that implements the complete post-processing step which has to be executed when

computing the partition function QAo. The underlying algorithmic principles are

similar to those used in the single-sequence case, again.

Finally,

float alipf_circ_fold(char **sequences, char *structure, pair_info **pi) �
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summarizes all neccessary function calls for the calculation of the partition

function and the base pairing probabilities for alignments of circular RNAs.

Regardless of that further changes were applied by modifying existing functions

that mainly do memory management during the computations according to the

extended requirements.

void get_arrays(unsigned int length) /* allocate memory */

void free_alipf_arrays(void) /* free memory */

short *encode_seq(const char *sequence) /* encode RNA sequence */ �
a.4.3 alifold.h

Function definition

extern float alipf_circ_fold(char **sequences, char *structure, pair_info **pi); �
was added in the appropriate header file.
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M A N U A L PA G E S

This chapter contains the modified man pages of the altered programs within the

ViennaRNAPackage.

b.1 rnafold man pages

b.1.1 Name

RNAfold - calculate secondary structures of RNAs

b.1.2 Synopsis

RNAfold [-p[0|2]] [-C] [-T temp] [-4] [-d[0|1|2|3]] [-noLP] [-noGU] [-noCloseGU]

[-e 1|2] [-P paramfile] [-nsp pairs] [-S scale] [-circ]

b.1.3 Description

RNAfold reads RNA sequences from stdin, calculates their minimum free energy

(mfe) structure and prints to stdout the mfe structure in bracket notation and its

free energy. If the -p option was given it also computes the partition function (pf)

and base pairing probability matrix, and prints the free energy of the thermo-

dynamic ensemble, the frequency of the mfe structure in the ensemble, and the

ensemble diversity to stdout. It also produces PostScript files with plots of the

resulting secondary structure graph and a "dot plot" of the base pairing matrix.

The dot plot shows a matrix of squares with area proportional to the pairing

probability in the upper right half, and one square for each pair in the minimum

free energy structure in the lower left half. For each pair i-j with probability
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p>10E-6 there is a line of the form

i j sqrt(p) ubox

in the PostScript file, so that the pair probabilities can be easily extracted. Se-

quences are read in a simple text format where each sequence occupies a single

line. Each sequence may be preceded by a line of the form

> name

to assign a name to the sequence. If a name is given in the input PostScript files

"name_ss.ps" and "name_dp.ps" are produced for

the structure and dot plot, respectively. Otherwise the file names default to rna.ps

and dot.ps. Existing files of the same name will be overwritten.

The input format is similar to fasta except that even long sequences may not be

interrupted by line breaks, and the header lines are optional. The program will

continue to read new sequences until a line consisting of the single character @

or an end of file condition is encountered.

b.1.4 Options

-p Calculate the partition function and base pairing probability matrix in addi-

tion to the mfe structure. Default is calculation of mfe structure only. Prints

a coarse representation of the pair probabilities in form of a pseudo bracket

notation, the ensemble free energy, the frequency of the mfe structure, and

the structural diversity. See the description of pf_fold() and mean_bp_dist()

in the RNAlib documentation for details.

Note that unless you also specify -d2 or -d0, the partition function and mfe

calculations will use a slightly different energy model. See the discussion

of dangling end options below.

-p0 Calculate the partition function but not the pair probabilities, saving about

50% in runtime. Prints the ensemble free energy -kT ln(Z).

-p2 In addition to pair probabilities compute stack probabilities, i.e. the proba-

bility that a pair (i,j) and the immediately interior pair (i+1,j-1) are formed

simultaneously. A second postscript dot plot called "name_dp2.ps", or

"dot2.ps" (if the sequence does not have a name), is produced that contains
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pair probabilities in the upper right half and stack probabilities in the lower

left.

-C Calculate structures subject to constraints. The program reads first the

sequence, then a string containing constraints on the structure encoded

with the symbols: | (the corresponding base has to be paired x (the base is

unpaired) < (base i is paired with a base j>i) > (base i is paired with a base

j<i) and matching brackets ( ) (base i pairs base j) With the exception of "|",

constraints will disallow all pairs conflicting with the constraint. This is

usually sufficient to enforce the constraint, but occasionally a base may stay

unpaired in spite of constraints. PF folding ignores constraints of type "|".

-T temp Rescale energy parameters to a temperature of temp C. Default is 37C.

-4 Do not include special stabilizing energies for certain tetra-loops. Mostly

for testing.

-d[0|1|2|3] How to treat "dangling end" energies for bases adjacent to helices in free

ends and multi-loops: With (-d1) only unpaired bases can participate in at

most one dangling end, this is the default for mfe folding but unsupported

for the partition function folding. With -d2 this check is ignored, dangling

energies will be added for the bases adjacent to a helix on both sides in any

case; this is the default for partition function folding (-p). -d or -d0 ignores

dangling ends altogether (mostly for debugging).

With -d3 mfe folding will allow coaxial stacking of adjacent helices in multi-

loops. At the moment the implementation will not allow coaxial stacking of

the two interior pairs in a loop of degree 3 and works only for mfe folding.

Note that by default (as well as with -d1 and -d3) pf and mfe folding treat

dangling ends differently. Use -d2 in addition to -p to ensure that both

algorithms use the same energy model.

-noLP Produce structures without lonely pairs (helices of length 1). For partition

function folding this only disallows pairs that can only occur isolated. Other

pairs may still occasionally occur as helices of length 1.

-noGU Do not allow GU pairs.

-noCloseGU Do not allow GU pairs at the end of helices.



86 manual pages

-e 1|2 Rarely used option to fold sequences from the artificial ABCD... alphabet,

where A pairs B, C-D etc. Use the energy parameters for GC (-e 1) or AU

(-e 2) pairs.

-P <paramfile> Read energy parameters from paramfile, instead of using the default param-

eter set. A sample parameter file should accompany your distribution. See

the RNAlib documentation for details on the file format.

-nsp pairs Allow other pairs in addition to the usual AU,GC,and GU pairs. pairs is a

comma separated list of additionally allowed pairs. If a the first character is

a "-" then AB will imply that AB and BA are allowed pairs. e.g. RNAfold

-nsp -GA will allow GA and AG pairs. Nonstandard pairs are given 0

stacking energy.

-S scale In the calculation of the pf use scale*mfe as an estimate for the ensemble

free energy (used to avoid overflows). The default is 1.07, useful values are

1.0 to 1.2. Occasionally needed for long sequences. You can also recompile

the program to use double precision (see the README file).

-circ Assume a circular (instead of linear) RNA molecule.

-noPS Do not produce postscript drawing of the mfe structure.

b.1.5 References

The calculation of mfe structures is based on dynamic programming algorithm

originally developed by M. Zuker and P. Stiegler. The partition function algorithm

is based on work by J.S. McCaskill. The energy parameters are taken from:

D.H. Mathews, J. Sabina, M. Zuker and H. Turner "Expanded Sequence De-

pendence of Thermodynamic Parameters Provides Robust Prediction of RNA

Secondary Structure" JMB, 288, pp 911-940, 1999

A. Walter, D Turner, J Kim, M Lyttle, P M[:u]ller, D Mathews, M Zuker "Coaxial

stacking of helices enhances binding of oligoribonucleotides.." PNAS, 91, pp

9218-9222, 1994

If you use this program in your work you might want to cite:

I.L. Hofacker, W. Fontana, P.F. Stadler, S. Bonhoeffer, M. Tacker, P. Schuster (1994)
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Fast Folding and Comparison of RNA Secondary Structures. Monatshefte f.

Chemie 125: 167-188

M. Zuker, P. Stiegler (1981) Optimal computer folding of large RNA sequences

using thermodynamic and auxiliary information, Nucl Acid Res 9: 133-148

J.S. McCaskill (1990) The equilibrium partition function and base pair binding

probabilities for RNA secondary structures, Biopolymers 29: 1105-1119

I.L. Hofacker & P.F. Stadler (2006) Memory Efficient Folding Algorithms for

Circular RNA Secondary Structures, Bioinformatics (2006)

D. Adams (1979) The hitchhiker’s guide to the galaxy, Pan Books, London

b.1.6 Version

This man page documents version 1.6.4 Vienna RNA Package.

b.1.7 Authors

Ivo L Hofacker, Walter Fontana, Sebastian Bonhoeffer, Peter F Stadler.

b.1.8 Bugs

If in doubt our program is right, nature is at fault. Comments should be sent to

rna@tbi.univie.ac.at.

b.2 rnasubopt man pages

b.2.1 Name

RNAsubopt - calculate suboptimal secondary structures of RNAs
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b.2.2 Synopsis

RNAsubopt [-e range] [-ep prange] [-s] [-p n] [-T temp] [-d[0|1|2|3]] [-4] [-noGU]

[-noCloseGU] [-P paramfile] [-logML] [-nsp pairs] [-circ]

b.3 description

RNAsubopt reads RNA sequences from stdin and (in the default -e mode) cal-

culates all suboptimal secondary structures within a user defined energy range

above the minimum free energy (mfe).It prints the suboptimal structures in

bracket notation followed by the energy in kcal/mol to stdout. Be careful, the

number of structures returned grows exponentially with both sequence length

and energy range. Alternatively, when used with the -p option, RNAsubopt

produces Boltzmann weighted samples of secondary structures. Sequences are

read in the usual format, i.e. each sequence occupies a single line, possibly

preceded by a fasta-style header line of the form

> name

b.3.1 Options

-e range Calculate suboptimal structures within range kcal/mol of the mfe. Default

is 1.

-s Sort the structures by energy. Since the sort in is done in memory, this

becomes impractical when the number of structures produced goes into

millions. In such cases better pipe the output through ‘sort +1n’.

-p n Instead of producing all suboptimals in an energy range, produce a random

sample of n suboptimal structures, drawn with probabilities equal to their

Boltzmann weights via stochastic backtracking in the partition function.

The -e and -p options a mutually exclusive.

-d[0|1|2|3] Change treatment of dangling ends, as in RNAfold and RNAeval. The

default is -d2 (as in partition function folding). If -d1 or -d3 are specified
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the structures are generated as with -d2 but energies are re-evaluated before

printing.

-logML re-calculate energies of structures using a logarithmic energy function for

multi-loops before output. This option does not effect structure generation,

only the energies that is printed out. Since logML lowers energies somewhat,

some structures may be missing.

-ep prange Only print structures with energy within prange of the mfe. Useful in

conjunction with -logML, -d1 or -d3: while the -e option specifies the range

before energies are re-evaluated, -ep specifies the maximum energy after

re-evaluation.

-noLP Only produce structures without lonely pairs (helices of length 1). This

reduces the number of structures drastically and should therefore be used

for longer sequences and larger energy ranges.

-circ Assume a circular (instead of linear) RNA molecule.

The -T, -4, -noGU, -noCloseGU, -P, -nsp, options work as in RNAfold.

b.3.2 References

Please cite:

S. Wuchty, W. Fontana, I. L. Hofacker and P. Schuster "Complete Suboptimal

Folding of RNA and the Stability of Secondary Structures", Biopolymers, 49,

145-165 (1999)

b.3.3 Version

This man page documents version 1.6.4 Vienna RNA Package.

b.3.4 Authors

Ivo L Hofacker, Stefan Wuchty, Walter Fontana.
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Send comments and bug reports to <rna@tbi.univie.ac.at> LocalWords: RNA-

SUBOPT RNAsubopt suboptimal RNAs fBRNAsubopt fIrange fP ep

LocalWords: prange lodos fItemp noGU noCloseGU paramfile logML nsp stdin

LocalWords: mfe kcal mol stdout TP RNAfold RNAeval multi fIprange noLP fB

LocalWords: br Wuchty Fontana Hofacker Schuster Biopolymers Ivo

b.4 rnaalifold man pages

b.4.1 Name

RNAalifold - calculate secondary structures for a set of aligned RNAs

b.4.2 Synopsis

RNAalifold [-cv weight] [-nc weight] [-E] [-p[0]] [-C] [-T temp] [-4] [-d] [-noLP]

[-noGU] [-noCloseGU] [-e 1|2] [-P paramfile] [-nsp pairs] [-S scale] [-circ] [<file.aln>]

b.4.3 Description

RNAalifold reads aligned RNA sequences from stdin or file.aln and calculates their

minimum free energy (mfe) structure, partition function (pf) and base pairing

probability matrix. Currently, the input alignment has to be in CLUSTAL format.

It returns the mfe structure in bracket notation, its energy, the free energy of

the thermodynamic ensemble and the frequency of the mfe structure in the

ensemble to stdout. It also produces Postscript files with plots of the resulting

secondary structure graph ("alirna.ps") and a "dot plot" of the base pairing matrix

("alidot.ps"). The file "alifold.out" will contain a list of likely pairs sorted by

credibility, suitable for viewing with "AliDot.pl". Be warned that output file will

overwrite any existing files of the same name.
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b.4.4 Options

-cv factor Set the weight of the covariance term in the energy function to factor. Default

is 1.

-nc factor Set the penalty for non-compatible sequences in the covariance term of the

energy function to factor. Default is 1.

-E Score pairs with endgaps same as gap-gap pairs.

-mis Output "most informative sequence" instead of simple consensus: For each

column of the alignment output the set of nucleotides with frequence greater

than average in IUPAC notation.

-p Calculate the partition function and base pairing probability matrix in

addition to the mfe structure. Default is calculation of mfe structure only.

-noLP Avoid structures without lonely pairs (helices of length 1). In the mfe case

structures with lonely pairs are strictly forbidden. For partition function

folding this disallows pairs that can only occur isolated. Setting this option

provides a significant speedup.

-circ Assume circular (instead of linear) RNA molecules.

-color Produce a colored version of the consensus strcture plot "alirna.ps" (default

b&w only).

-aln Produce a colored and structure annotated alignment in PostScript format

in the file "aln.ps" in the current directory.

The -T, -d, -4, -noGU, -noCloseGU, -e, -P, -nsp, options should work as in

RNAfold If using -C constraints will be read from stdin, the alignment has to

given as a filename on the command line.

b.4.5 Caveats

Since gaps are not removed for the evaluation of energies, it may be of advantage

to remove any columns with more than, say, 75% gaps from the alignment before
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folding with RNAalifold. Sequences are not weighted. If possible, do not mix

very similar and dissimilar sequences. Duplicate sequences, for example, can

distort the prediction.

b.4.6 See Also

The ALIDOT package http://www.tbi.univie.ac.at/RNA/ALIDOT/

b.4.7 References

The algorithm is a variant of the dynamic programming algorithms of M. Zuker

and P. Stiegler (mfe) and J.S. McCaskill (pf) adapted for sets of aligned sequences

with covariance information. The energy parameters are taken from:

D.H. Mathews, J. Sabina, M. Zuker and H. Turner "Expanded Sequence De-

pendence of Thermodynamic Parameters Provides Robust Prediction of RNA

Secondary Structure" JMB, 288, pp 911-940, 1999

If you use this program in your work you might want to cite:

Ivo L. Hofacker, Martin Fekete, and Peter F. Stadler "Secondary Structure Predic-

tion for Aligned RNA Sequences" J.Mol.Biol. 319: 1059-1066 (2002).

b.4.8 Version

This man page documents version 1.6.4 of the Vienna RNA Package.

b.5 authors

Ivo L Hofacker <ivo@tbi.univie.ac.at>
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b.5.1 Bugs

If in doubt our program is right, nature is at fault. Comments should be sent to

rna@tbi.univie.ac.at. LocalWords: RNAalifold ViennaRNA RNAs fBRNAalifold

fP fI fItemp noLP noGU

LocalWords: noCloseGU fIparamfile nsp fIpairs fIscale fIfile aln stdin mfe

LocalWords: alirna ps alidot alifold AliDot TP cv fIfactor nc fBonly fB br

LocalWords: fUshould RNAfold Stiegler McCaskill JMB Fekete CLUSTAL stdout
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