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Abstract. G-quadruplexes are abundant locally stable structural ele-
ments in nucleic acids. The combinatorial theory of RNA structures and
the dynamic programming algorithms for RNA secondary structure pre-
diction are extended here to incorporate G-quadruplexes. Using a simple
but plausible energy model for quadruplexes, we find that the overwhelm-
ing majority of putative quadruplex-forming sequences in the human
genome are likely to fold into canonical secondary structures instead.
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1 Introduction

Guanosine-rich nucleic acid sequences readily fold into four-stranded structures
known as G-quadruplexes. DNA quadruplexes are, for instance, an important
component of human telomeres [1], they appear to be strongly overrepresented in
the promoter regions of diverse organisms, and they can associate with a variety
of small molecule ligands, see [2, 3] for recent reviews. SNPs in G-quadruplexes,
finally, have been implicated as a source variation of gene expression levels [4].
RNA quadruplexes have also been implicated in regulatory functions. Conserved
G-quadruplex structures within the 5’-UTR of the human TRF2 mRNA [5] and
eukaryotic MT3 matrix metalloproteinases, for example, repress translation [6].
Another well-studied example is the interaction of the RGG box domain fragile
X mental retardation protein (FMRP) to a G-quartet-forming region in the
human semaphorin 3F (S3F) mRNA [7, 8]. A recent review of G-quadruplex-
based translation regulation is [9]. A functional RNA G-quadruplex in the 3’
UTR was recently described as a translational repressor of the proto-oncogene
PIM1 [10]. A mechanistic study of this effect, which seems to be widely used in
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Fig. 1. RNA quadru-
plexes form parallel ar-
rangements with L =
2...5 layers. Folding en-
ergies for L = 3 de-
pend mostly on the total
length ℓ of the linker se-
quences: the data from
ref. [16] fit well to an en-
ergy model of the form
∆G = a + b ln ℓ (solid
line).

the cell [11, 12] can be found e.g. in [13]. Most recently, G-quadruplexes were also
reported in several long non-coding RNAs [14]. G-quadruplexes are potentially
of functional importance in the 100 to 9000 nt G-rich telomeric repeat-containing
RNAs (TERRAs). These pol-II transcripts are produced from telomers and seem
to be important for the regulation of telomerase activity [15].

Quadruplex structures consist of stacked associations of G-quartets, i.e., pla-
nar assemblies of four Hoogsteen-bonded guanines. As in the case of base pair-
ing, the stability of quadruplexes is derived from π-orbital interactions among
stacked quartets. The centrally located cations that are coordinated by the quar-
tets also have a major influence on the stability of quadruplex structures, which
are composed of at least two and typically not more than 5 stacked quartets.

DNA quadruplexes are structurally heterogeneous: depending on the gly-
cosidic bond angles there are 16 possible structures and further combinatorial
complexity is introduced by the relative orientations of the backbone along the
four edges of the stack [17]. RNA quadruplexes, in contrast, appear to be struc-
turally monomorphic forming parallel-stranded conformations (Fig. 1, left) in-
dependently of surrounding conditions, i.e., different cations and RNA concen-
tration [18]. In this contribution we restrict ourselves to the simpler case of RNA
quadruplexes.

Bioinformatically, G-quadruplex structures have been investigated mostly as
genomic sequence motifs. The G4P Calculator searches for four adjacent runs
of at least three Gs. With its help a correlation of putative quadruplex forming
sequences and certain functional classes of genes was detected [19]. Similarly,
quadparser [20] recognizes the pattern (1) below. It was used e.g. in [21] to
demonstrate the enrichment of quadruplexes in transcriptional regulatory re-
gions. A substantial conservation of such sequence patterns in mammalian pro-
moter regions is reported in [22]. The web service QGRS Mapper uses a similar
pattern and implements a heuristic scoring system [23], see also [24] for a review.
A Bayesian prediction framework based on Gaussian process regression was re-
cently introduced to predict melting temperatures of quadruplex sequences [25].

The formation of RNA quadruplexes necessarily competes with the formation
of canonical secondary structures. Hence they cannot be fully understood in iso-
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Fig. 2. Structure of the G-
quadruplex in a hairpin of
human semaphorin 3F RNA
that binds the RGG box do-
main of fragile X mental retar-
dation protein (FMRP). Re-
drawn based on [7].

lation. In this contribution we therefore investigate how G-quadruplex structures
can be incorporated into RNA secondary structure prediction algorithms.

2 Energy Model for RNA Quadruplexes

Thermodynamic parameters for RNA quadruplexes can be derived from mea-
surements of UV absorption as a function of temperature [26], analogous to melt-
ing curves of secondary structures. While the stability of DNA G-quadruplexes
strongly depends on the arrangement of loops [27, 28] this does not appear to be
the case for RNA. RNA not only forms mostly parallel-stranded stacks for G-
quartets but their stability also exhibits a rather simple dependence of the loop
length [16]. In further contrast to DNA [29], they appear to be less dependent
on the nucleotide sequence itself.

A G-quadruplex with 2 ≤ L ≤ 5 stacked G-quartets and three linkers of
length l1, l2, l3 ≥ 1 has the form

GLNl1GLNl2GLNl3GL (1)

It is commonly assumed that 1 ≤ li ≤ 7 [25], although in vitro data for DNA
suggest that longer linkers are possible [30]. For L = 2, the existence of quadru-
plexes with 1 ≤ ℓi ≤ 2 was reported [31]. For L = 3 detailed thermodynamic
data are available only for the 27 cases 1 ≤ l1, l2, l3 ≤ 3 and for some longer
symmetric linkers l1 = l2 = l3 [16], see Figure 1b. To our knowledge, no compre-
hensive data are available for L ≥ 4. It appears reasonable to assume that the
stacking energies are additive. The energetic effect of the linkers appears to be
well described in terms of the total linker length ℓ [16]. As shown in Figure 1b
the free energy depends approximately logarithmically on ℓ. In this contribution
we are mostly concerned with the algorithmic issues of including G-quadruplexes
into thermodynamic folding programs. In particular we ignore here the strong
dependence of quadruplex stability on the potassium concentration, see e.g. [32].
We thus resort to the simplified energy function

E[L, ℓ] = a(L − 1)g0 + b ln(ℓ − 2) (2)

with parameters a = −18 kcal/mol and b = 12 kcal/mol if the pattern (1) is
matched, and E = ∞ otherwise.
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G-quadruplex structures can be located within loops of more complex sec-
ondary structures. Fig. 2, for instance, shows the L = 2, l1 = l2 = l3 = 2
quadruplex in a hairpin of the semaphorin 3F RNA [7]. It seems natural to
treat G-quadruplexes inside multiloops similar to their branching helices: each
unpaired base incurs a penalty a and each G-quadruplex within a loop is associ-
ated with an additional “loop strain” b. For the interior-loop case of Fig. 2, only
stabilizing mismatch contributions of the enclosing pair and a penalty for the
stretches of unpaired bases are used. Sterical considerations for this case suggest
that a G-quadruplex is flanked by a stretch of at least three unpaired nucleotides
or has at least one unpaired nucleotide on either side.

3 Combinatorics of Structures with Quadruplexes

RNA secondary structures consist of mutually non-crossing base pairs and un-
paired positions. Thus they can be represented as strings composed of matching
parentheses (base pairs) and dots. This “dot-parenthesis” notation is used by the
ViennaRNA Package [33]. G-quadruplexes constitute an extra type of structural
element. The semaphorin hairpin, Fig. 2, can therefore be written as

GGCUGGUGAUUGGAAGGGAGGGAGGUGGCCAGCC

(((((((....++..++..++..++..)))))))
(3)

using the symbol + to mark the bases involved in G-quartets. This string repre-
sentation uniquely identifies all G-quartets since the first run of + symbols de-
termines L for the 5’-most quadruplex, thus determining the next three G-stacks
which are separated by at least one ‘.’ and must have the same length. It fol-
lows immediately that the number of secondary structures with G-quadruplexes
is still smaller than 4n, an observation that is important for the evolvability
of RNAs [34]. In order to get a tighter bound on the number of structures we
use here, for the sake of presentation, a simplified model in which we omit the
restrictions of a minimal size of a hairpin loop and allow quadruplexes with any
value of L ≥ 2 and li ≥ 1. A refinement with a more realistic parametrization
can be found in the supplement.

Let gn denote the number of secondary structures with G quadruplexes
on a sequence of length n. The corresponding generating function is G(x) =
∑

n≥0 gnxn. Similarly, let qn be the number of quadruplexes on length n. As
derived in the appendix, its generating function is

Q(x) =
∑

n≥0

qnxn =
x11

(1 − x)3(1 − x4)
(4)

The basic idea is now to consider a structure consisting of b base pairs, u unpaired
bases and k quadruplexes. Then there are

(

2b+k
k

)

ways to insert k quadruplexes

into each of the Cb = 1
b+1

(

2b
b

)

possible arrangements of b matching pairs of paren-
theses, see [35] about the Catalan numbers Cb. Into each of these arrangements
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we can insert u unpaired bases in
(

2b+k+u
u

)

different ways. Thus we have

G(x) =
∑

k

∑

b

∑

u

1

b + 1

(

2b

b

)(

2b + k

k

)(

2b + k + u

u

)

x2b+uQ(x)k

=
2

1 − x − Q(x) +
√

(1 − 3x − Q(x))(1 + x − Q(x)))

(5)

Following [36] we find that the coefficients of G(x) are asymptotically given by
gn ∼ k0n

−3/2 γn, where k0 is a positive constant and γ ≈ 3.00005. A more de-
tailed model accounting for minimal stack and loop lengths yields γ ≈ 2.2903 if
isolated base pairs are allowed, and γ ≈ 1.8643 for canonical secondary struc-
tures. Details are given in the Supplemental Material.

4 RNA Folding Algorithms

Energy Minimization. Dynamic programming algorithms for secondary struc-
ture prediction are based on a simple recursive decomposition: any feasible struc-
ture on the interval [i, j] has the first base either unpaired or paired with a
position k satisfying i < k ≤ j. The condition that base pairs do not cross im-
plies that the intervals [i + 1, k − 1] and [k + 1, j] form self-contained structures
whose energies can be evaluated independent of each other. In conjunction with
the standard energy model [37], which distinguishes hairpin loops, interior loops
(including stacked base pairs), and multi-loops, this leads to the recursions dia-
grammatically represented in Fig. 3 (ignoring the cases involving black blocks).
This algorithmic approach was pioneered e.g. in [38, 39] and is also used in the
ViennaRNA Package [33].

G-quadruplexes form closed structural elements on well-defined sequence in-
tervals. Thus they can be treated just like substructures enclosed by a base
pair, so that the additional ingredients in the folding algorithms are the en-
ergies Gij (free energy of the most stable quadruplex so that the pattern (1)
matches exactly the interval [i, j]) and the partition functions ZG

ij (defined as
the sum of the Boltzmann factors of all distinct quadruplexes on the inter-
val [i, j]). As a consequence of (1) we have Gij < ∞ and ZG

ij > 0 only if
|j − i| < 4Lmax + ℓmax. All possible quadruplexes on the interval [i, j] can be
determined and evaluated in O(L2

maxℓ
2
max) time so that these arrays can be pre-

computed in O(n(Lmax + ℓmax)L
2
maxℓ

2
max), i.e., in linear time.

The standard recursions for RNA secondary structure prediction can now
be extended by extra terms for quadruplexes, see Fig. 3. The simplest strategy
would be to add G-quadruplexes as an additional type of base-pair enclosed
structures. This would amount to using standard interior loop parameters also
for cases such as Fig. 2. Hence we use the somewhat more elaborate grammar
of Fig. 3, which introduces the quadruplexes in the form of additional cases into
the multi-loop decomposition. An advantage of this method is that one can use
different parameter values to penalize the inclusion of quadruplexes and helical
components into a multiloop. Clearly the grammar is still unambiguous, i.e.,
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Fig. 3. Extension of recursions of the ViennaRNA Package to accomodate G-
quadruplexes. This grammar treats G-quadruplexes with multi-loop like energies also
in an interior-loop-like context.

every structure has an unique parse. Thus it can be used directly to compute
partition functions.
Base Pairing Probabilities. A straightforward generalization of McCaskill’s
algorithm can be used to compute the probabilities Pij of all possible base pairs
(i, j). The probability PG

ij of finding a G-quadruplex delimited by positions i and
j then can be written as

PG
ij =

Z1,i−1Z
G
ijZj+1,n

Z
+

∑

k<i−1
l>j+1

PklP
{

quadruplex[i, j]
∣

∣(k, l)
}

(6)

The conditional probabilities P{. . . } in turn are composed of the four individual
cases depending on the placement of the components of the generalized multiloop
enclosed by (k, l) relative to the interval [i, j]:

k li j k li j k li j k li j

(7)

This decomposition translates to the recursion P
{

quadruplex[i, j]
∣

∣(k, l)
}

=

Z
M
k+1,i−1Z

G
ij Z

M
j+1,l−1

ZB
kl

+
Z

M
k+1,i−1Z

G
ij b̂

l−j−1

ZB
kl

+
b̂
i−k−1

Z
G
ijZ

M
j+1,l−1

ZB
kl

+
b̂
i−k−1

Z
G
ij b̂

l−j−1

ZB
kl

where b̂ = exp(−b/RT ). From the PG
ij it is straightforward to compute the

probability of a particular quadruplex as

p([i, L, l1, l2, j]) =
exp(−E[L, ℓ])

ZG
ij

PG
ij (8)
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Fig. 4. Representation of minimum free energy structure (l.h.s.) and base pairing prob-
ability matrix (r.h.s.) of the semaphorin hairpin (see Fig. 2) respectively.

where l3 = j−i+1−4L−l1−l2. Summing up the probabilities of all quadruplexes
that contain a particular contact i′ : j′ of two guanosines in a layer finally yield
the probability of the G:G contact i′ : j′.

Fig. 4 shows an example of the graphical output of RNAfold. In the mini-
mum energy case we use a very simple modification of the standard layout [40]
treating each quadruplex like a local hairpin structure, explicitly indicating the
G-G pairs. Quadruplexes are shown in addition to the individual G-G pairs as
shaded triangles in the base pair probability dot plots. From the base pairing
probabilities we also compute MEA [41] and centroid structures.

By definition the centroid structure X minimizes the expected base pair
distance to the other structures within the Boltzmann-weighted ensemble. In
the absence of G-quadruplexes X consists of all base pairs (i, j) with pij > 1/2.
A certain ambiguity arises depending on whether X is interpreted as a list of
base pairs that may contain incomplete quadruplexes, or whether quadruplexes
are treated as units. Here, we insert a quadruplex if PG

ij > 0.5, and represent it
by the most stable quadruplex with endpoints i and j. The same representation
is used for MEA structures where we extend the maximized expected accuracy
to EA =

∑

(i,j)∈S 2γ(Pi,j + PG
ij ) +

∑

i Pu
i with Pu

i = 1 −
∑

j Pij −
∑

k≤i≤l PG
kl ,

accordingly.

Consensus Structures can be readily obtained for a given multiple sequence
alignment. The idea is to apply the dynamic programming recursions to align-
ment columns. The energy contributions are determined as the average of the
corresponding contributions to the individual sequences [43]. In addition small
contributions are added to favor pairs of columns with consistent (e.g. GC→GU)
and compensatory mutations (AU→GC) since these provide direct evidence for
selection acting to preserve base pairing. Similarly, penalties are added if one or
a few sequences cannot form a base pair. We refer to [44] for details of the scor-
ing model implemented in RNAalifold. Here, we extend it by a simple system
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....(((((((.((+++..+++.+++...+++....))..(((((.((.((.(.......
Human_NRAS_5 GAAACGTCCCGTGTGGGAGGGGCGGGTCTGGGTGCGGCCTGCCGCATGACT-CGTGGTTC 59
Rhesus_NRAS_5 GAAACGTCCCGTGTGGGAGGGGCGGGTCTGGGTGCGGCCTGCCGCATGACT-CCTGGTTC 59
Cow_NRAS_5 AAAACGTCCTGTATGGGAGGGGCGGGTCTGGGTGCGGTCTGCCGCGTGACT-CCTGGGTC 59
Horse_NRAS_5 GCAACGTCCTGTGCGGGAGGGGCGGGTCTGGGTGCGGCCTGCCACATGACT-CCGGGGTT 59
Rabbit_NRAS_5 GAAACGTCCCGTGCGGGAGGGGCGGGTCTGGGTGCGGCCTGCCGCGTGACT-TCTAGGTC 59
Dog_NRAS_5 GAGGCGTCCTGTGTGGGAGGGGCGGGAATGGGTGCGGCCCGCCGCGTGACT-CCTGGGTC 59
Dasypus_NRAS_5 GAAACATCCCGTGTGGGAGGGGCGGGTATGGGTGGGGCGTTCCGCGTGACT-CCTAGGTC 59
Elephant_NRAS_5 GAAACGTCCAGTGCGGGAGGGGCGGGTATGGGTGGGGCTTGCCGCGTGACT-ACCCGGTC 59
Mouse_NRAS_5 GAAATGGG--GGCGGGGCGGGGCTGGACTGGGTGCGGCCGGCTGCAAGACT-CTAG--TC 55
Opossum_NRAS_5 ATGGGGGAAGGGGCGGGAAGGGGGGGGTTGGGTGGGGCTTGC-ACGTGACCGAACCGGCT 59

.........10........20........30........40........50.........

.)))...)).)))))))))))).
Human_NRAS_5 GGAGGCCCACGTGGCCGGGGCGG 82
Rhesus_NRAS_5 GGAGGCCCACGTGGCCGGGGCGG 82
Cow_NRAS_5 AGAGGCCCACGTGGCCGGGGCGG 82
Horse_NRAS_5 GGAAGCCCACGTGGCCGGGGCGG 82
Rabbit_NRAS_5 GGAGGCCCACGTGGCCGGGGCGG 82
Dog_NRAS_5 GGGGGCCCACGTGGCCGGGGCGG 82
Dasypus_NRAS_5 GAGGGCCCACGTGGCCGGGGCGG 82
Elephant_NRAS_5 GGAGGCCCACGTGGCCGGGGCGG 82
Mouse_NRAS_5 GTCGGCCCACGTGGCTGGGGCGG 78
Opossum_NRAS_5 GTGGCCCCACGTGGCCGAGGCGG 82

.........70........80..
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Fig. 5. Consensus structure of the 5’-most part of the 5’UTR of the NRAS mRNA,
exhibiting a conserved G-quadruplex with L = 3 that modulates translation of the
NRAS proto-oncogene [42]. Colors indicate the number (red 1, ochre 2, green 3) of
different types of basepairs in a pair of alignment columns, unsaturated colors indicate
basepairs that cannot be formed by 1 or 2 sequences. Substitutions in stem regions are
indicated by circles in the secondary structure drawing.

of penalties for mutations that disrupt quadruplexes. Non-G nucleotides incur
an energy E′ in the outer layers of the quadruplex and 2E′ in the inner layers
as they affect one or two stacking interactions, respectively. An example of a
consensus structure prediction is shown in Fig. 5.

Implementation Details. The implementation of G-quadruplex folding in
RNAfold and RNAalifold essentially follows the extended grammar shown in
Fig. 3, distinguishing the energy contribution of unpaired bases in the exter-
nal loop from those enclosed by base pairs. The energies of all possible G-
quadruplexes are pre-computed, storing the energy of the most stable quadruplex
for each pair of endpoints in the triangular matrix G. As this matrix will be very
sparse for most inputs, a sparse matrix optimization is possible, but not yet
implemented. In the backtracing part we re-enumerate quadruplexes with given
endpoints whenever necessary. Base pairing probabilities are computed as out-
lined above. Since there cannot be a conflict with canonical base pairs, we store
PG

ij as part of the base pairing probability matrix. The probabilities of individual
G-G contacts are computed by enumeration as a post-processing step. We also
adapted the RNAeval and RNAplot programs so that sequence/structure pairs
can be parsed and re-evaluated according to the extended grammar.

Availability. The source code can be downloaded from www.tbi.univie.ac.

at/~ronny/programs/.

5 Evaluation

Runtime Performance. The runtime of RNAfold with the extended grammar
of Fig. 3 was compared to the implementation of the standard model. For both,
energy minimization and partition function, virtually no difference was observed.
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Fig. 6. Abundance and stability of putative G-quadruplexes. L.h.s.: Box plot show-
ing the number of potential G-quadruplexes in human chromosome 2 within sliding
windows of 500 000 nucleotides. For comparison, the same information for a random
sequence with the same mono- or di-nucleotide composition than chr. 2 is presented as
well. Both, the mono- and di-nucleotide distribution have been generated from chro-
mosome 2. RNAfold denotes the number of putative G-quadruplexes stable enough to
occur in a predicted structure of 100 nucleotides up- and downstream of the puta-
tive G-quadruplex (with median=1, interquartile range=0–2). R.h.s.: fraction of stable
quadruplexes as function of L. for human chromosome 2.

For short sequences of about 200 nt the additional pre-processing steps incur a
minor but negligible runtime overhead.
Occurrance and stability of G-quadruplexes in genomes. Sequence mo-
tifs of the form (1) that can in principle form quadruplex structures are very
abundant in most genomes, see e.g. [19–21]. The number of putative quadruplex-
forming sequences is even slightly larger than expected from random sequences
with the same mono- or dinucleotide distributions, Fig. 6. The overwhelming ma-
jority of these quadruplex candidates, however, is unstable compared to canon-
ical secondary structures that use some or all of Gs in canonical base pairs. We
observe that less than 2% of the putative quadruplexes are thermodynamically
stable. Interestingly, this effect is nearly independent of the number of layers
(L). This data is, however, preliminary in that it reflects the occurrance of pu-
tative G-quadruplexes on the human chromosome 2 only. More comprehensive
and accurate data that are not restricted to a single fixed window length will be
computed with our forthcoming local folding algorithm that extends RNALfold

[45].

6 Discussion

We have shown in this contribution that structural elements such as G-quadruplexes
that correspond to uninterrupted sequence intervals can be included in a rather
straightforward way into the standard dynamic programming recursions – pro-
vided a corresponding extension of the energy model can be devised. The G-
quadruplex-aware programs are currently available as a separate branch 2.0.3g
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of the ViennaRNA Package using a very simple energy function for the quadru-
plexes that reproduces the few available experimental data at least semi-quanti-
tatively. Following further optimization of the code the algorithmic extensions
will be integrated in the main version of the package in the near future. The ex-
tensions in Fig. 3 can also be applied to local folding algorithms such as RNALfold
and RNAplfold or the the exhaustive enumeration of suboptimal structures in
RNAsubopt. This is ongoing work, as is a comprehensive set of tools for genome-
wide scans for putative G-quadruplexes.

It is less obvious how to handle quadruplexes in RNA-RNA interactions since
our recursions consider local G-quadruplexes only. At least it is clear that they
can be included in all those parts of the structure that are not involved in
intermolecular contacts. Some quadruplex structures, however, are formed in

trans. The binding of G-rich small RNAs to G-rich regions in reporter mRNAs
leads to the formation of an intermolecular RNA G-quadruplex that in turn can
inhibit translation in living cells [46]. One can use RNAup [47] to compute the
probabilities p(1) and p(2) that the G-rich regions are unpaired. From these, we
obtain the free energies G(i) = −RT ln p(i) to make the binding site accessible.
It remains to compute the interaction energy itself.

The main problem for practical applications of quadruplex-aware RNA fold-
ing tools is our limited knowledge of the energy function in particular for L 6= 3
and for asymmetric linkers. Even with the crude energy function employed here
it becomes clear that the overwhelming majority of putative genomic quadru-
plex sequences will fold into a canonical secondary structure rather than G-
quadruplex structures.

Acknowledgements. This work was supported in part by the German Re-
search Foundation (STA 850/7-2, under the auspicies of SPP-1258 “Sensory and
Regulatory RNAs in Prokaryotes”), the Austrian GEN-AU projects “regulatory
non coding RNA”, “Bioinformatics Integration Network III” and the Austrian
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Supplemental Material

A Combinatorics of RNA Structures with Quadruplexes

Here we describe a more detailed combinatorial model of secondary structures
with G-quadruplexes than the simplified version outlined in the main text.

A1 Model

A secondary structure of length n is a noncrossing partial matching (matching
with isolated vertices) such that each base pair is of length at least 3. For sim-
plicity, we consider an arbitrary number of L ≥ 2 stacked G-quartets and three
linkers of length l1, l2 and l3 ≥ 1. We allow quadruplexes in any context with the
following exception: If (i, j) is a base pair that encloses a single quadruplexes,
then at least one of three conditions is satisfied: (1) i + 1 and j − 1 are both
unpaired; (2) i + 1, i + 2, i + 3 are unpairedm or (3) j − 3, j − 2, j − 1 are
unpaired. We call such structures G-structures in the following.

A stack of length τ consists of exactly τ “parallel” arcs ((i, j), (i + 1, j −
1), . . . , (i + (τ − 1), j − (τ − 1))). We say that a G-structure is τ -canonical if all
stacks consist of at least τ arcs.

The enumeration is based on the notion of shapes, that is, matchings in which
each stack consists of exactly one arc. The shape of an arbitrary G-structure s
is obtained by (1) contracting each G-quadruplex to a single vertex labelled ‘G’,
and (2) iteratively collapsing each stack to a single arc and then removing any
isolated vertices from the resulting diagram as in the following example:

Collapse stack-

Collapse stack-

Remove isolated vertices

Remove isolated vertices

Contract quadruplexes by G vertices(red)

G G

A2 Generating functions

Let sn,t denote the number of all noncrossing shapes over 2n vertices with t
arcs of length 1 (1-arcs) and its corresponding generating function S(u, e) =
∑

n

∑

t sn,tu
net. Denote by mt the number of noncrossing matchings with t
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arcs. Note that m2t is the well-known t-th Catalan number. Using the generating

function M(u) = 1−
√

1−4u
2u for the matchings we have

S(u, e) =
1 + u

1 + 2u − ue
M

(

u(1 + u)

(1 + 2u − ue)2

)

.

In the following we will make use of several auxiliary functions:

Q(x) =
x11

(1 − x4)(1 − x)3
, P0(x) =

(1 − x)Q(x)

1 − x − xQ(x)
, R(x) =

x2

(1 − x)2
,

T(x) =
1

(1 − x)2
, L(x) =

2x3

1 − x
, P1(x) =

x

1 − x
+ T(x)P0(x),

P2(x) =
x3

1 − x
+ (R(x) + L(x))P0(x), P3(x) =

1

1 − x
+ T(x)P0(x).

Our main result is

Theorem 1. The generating function of τ-canonical G-structures is

Gτ (x) =
∑

n

gτ
nxn = P3(x)S

(

x2τ ·P2
3(x)

(1 − x2) − x2τ (2P1(x) + P2
1(x))

,
P2(x)

P3(x)

)

.

Proof. We utilize the following combinatorial classes: E (neutral class, consisting
of a single element of size 0), Z (vertices, with size 1), U (arcs, comprising two
vertices thus having size 2), and W (quadruple arcs taking 4 vertices).
Claim 1. The generating function of the numbers qn of quadruplexes on length
n is

Q(x) =
x11

(1 − x4)(1 − x)3
.

Let Q denote the combinatorial class of G-quadruplexes. By construction, each
quadruplex consists of L ≥ 2 stacked G-quartets and three linkers of length at
least 1. Thus we have Q = W2 × SEQ(W) × (Z × SEQ(Z))3. This implies the
Claim 1.

Denote by pn the number of G-structures of length n without base pairs out-
side quadruplexes with two additional restrictions: (1) its first and last vertices
are part of a quadruplex and (2) if there exist two consecutive G-quartets, then
there exists at least one isolated vertex between them.
Claim 2. The generating function of pn is P0(x) = (1−x)Q(x)

1−x−xQ(x) .

We proceed by induction on the number of G-quadruplexes. Let pk
n denote the

number of single stranded secondary structures with k G-quadruplexes of length
n, then we have its corresponding generating function Pk

0(x) = Q(x)k ·( x
1−x )k−1.

The claim follows by summing all k ≥ 1.
Claim 3. Let λ be a fixed noncrossing shape with s ≥ 1 arcs and m ≥ 0
1-arcs (arcs of length 1). Then the generating function of τ -canonical G-structures
containing arc length at least 3 that have shape λ is given by

Qλ
τ (x) = P3(x) ·

(

x2τ ·P2
3(x)

(1 − x2) − x2τ (2P1(x) + P2
1(x))

)s (

P2(x)

P3(x)

)m
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In order to prove the claim, we use the additional notations Zr/b/g for
red/blue/green vertices. We can construct an arbitrary τ -canonical G-structure
with arc-length at least 3 and shape λ in the following way: Starting from the
shape λ, insert at most one red isolated vertex into the (2s + 1) intervals except
the interval [i, i + 1] for which that (i, i + 1) is an 1-arc in λ. The corresponding
combinatorial class is M1 = Us × (E +Zr)

2s−m+1. Next insert exactly one green
isolated vertex after each vertex j such that (j, j + 1) forms an 1-arc in λ. This
yields the class M2 = M1 ×Zm

g .
Next, we inflate each arc into a stack of size t ≥ 0. In case of t ≥ 1, between

the arcs of the obtained stack we insert a blue isolated vertex to the left or the
right, or on both sides in order to separate the arcs and for each such insertion
exactly one blue isolated vertex is used. This results in the combinatorial class
M3 from M2 by the substitution

U →
∑

t≥1

U t × (2Zb + Z2
b )t−1.

Now we inflate each arc in the resulting structure into a stack of size at least
τ . The combinatorial class M4 results from M3 via the substitution U → Uτ

1−U .
Next we inflate each red isolated vertex into either a sequence of isolated

vertices of length at least one or a P0-structure ϑ1 in addition with two sequences
of isolated vertices (at least 1) at both ends of ϑ2 or a sequence of isolated vertices
(at least 3) at one of the ends of ϑ2. The corresponding class M6 is symbolically
obtained from M5 by the substitution Zg → Z3×SEQ(Z)+ (Z ×SEQ(Z))2×
P0 + 2Z3 × SEQ(Z) × P0.

We then inflate each green isolated vertex into either a sequence of iso-
lated vertices of length at least three or a P0-structure ϑ2 in addition with
two sequences of isolated vertices (at least 1) at both ends of ϑ2. The cor-
responding class M6 is symbolically obtained from M5 by the substitution
Zg → Z3 × SEQ(Z) + (Z × SEQ(Z))2 × P0.

We finally inflate each blue isolated vertex into either a sequence of isolated
vertices of length at least one or a P0-structure ϑ3 in addition with two sequences
of isolated vertices at both ends of ϑ3. The corresponding combinatorial class
M7 is symbolically obtained from M6 by the substitution Zb → Z×SEQ(Z)+
(SEQ(Z))2 × P0.

Combine the steps together, the claim follows. The procedure is illustrated
in Fig. 7.

In particular, Qλ
τ (x) depends only upon the number of arcs and 1-arcs in

λ. Then by definition of the generating function S(u, e), we obtain Gτ (x) by
summing over all the possible shapes and the theorem follows. ⊓⊔

A3 Asymptotics

Let us briefly recall some facts concerning the singularity analysis of func-
tional composition [36]. Suppose f(x) and g(x), with g(0) = 0, have non-
negative coeffients and are analytic at the origin. We consider the composition
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.. .G G .... G G. .G .... G . . .. .G G . G G G. .. .

shape

structure

Fig. 7. From a
shape to a secondary
structure with G-
quadruplexes. Each
G-quadruplex is
shown as a vertex
labelled by G.

h = f(g(x)). Let ρf , ρg, and ρh be the corresponding radii of the convergence,
and let τg = g(ρg). The asymptotic behavior of h then depends on the compari-
son of τg and ρf :

1. τg > ρf (supercritical case) the singularity type is that of the external func-
tion f ;

2. τg < ρf (subcritical case) the singularity of f(g) is driven by that of the
inside function g;

3. τg = ρf (critical case) the singularity type is a mix of the types of the internal
function and the external function and needs special attention.

Theorem 2. Let gτ
n denote the number of τ-canonical G-structures on length

n. Then we have for τ = 1, 2

gτ
n ∼ kτ n−3/2 (ρ−1

τ )n.

Here, ρ−1
1 ≈ 2.2903, ρ−1

2 ≈ 1.8643, and k1, k2 are positive constants.

Proof. Combining the expressions for S(u, e) and Gτ (x) we arrive at

Gτ (x) =
A1(x)

A2(x)
·M

(

B1(x)

B2(x)

)

,

where A1(x), A2(x), A3(x), and A4(x) are fixed polynomials. Clearly Qτ (x) is
algebraic. Furthermore, since the composition scheme is supercritical [36] for the
cases τ = 1 and τ = 2, the singularity type is that of the external function, i.e.,
M(x). In particular, we have ρ−1

1 ≈ 2.2903 and ρ−1
2 ≈ 1.8643. ⊓⊔

For the corresponding structures without any G-quadruplex, we obtain the
results immediately by setting Q(x) = 0 in the above derivation. Thus, we obtain
ρ̂−1
1 ≈ 2.2887 and ρ̂−1

2 ≈ 1.8489. Numerical values were obtained with Maple,
version 11.


