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2. Soft Constraints

4. A self-consistent method
RNA function is determined by RNA structure 
and therefore knowledge of the spatial structure 
of RNA is an asset for understanding various 
biological processes such as RNA regulation. 
Chemical and enzymatic probing methods such 
as SHAPE allow for fine-grained assessment of 
RNA structure at nucleotide resolution. The 
advent of high-throughput structural probing 
such as SHAPE-seq or PARS has spurred the 
development of computational techniques that 
incorporate such experimental data as auxiliary 
information.
Popular RNA folding algorithms, as implemented 
e.g. in the ViennaRNA Package, typically yield 
excellent prediction results for short sequences. 
However, accuracy decreases to between 40% 
and 70% for long RNA sequences due to 
imperfection of the thermodynamic parameters, 
and inherent limitations of the secondary 
structure model, such as tertiary interactions, 
pseudoknots, ligand binding, or kinetic traps.

Fig. 1 RNA secondary structure of E.coli 5S rRNA anno-
tated with experimentally determined SHAPE reactivities.

To alleviate the gap in available prediction tools 
we have developed a framework for incorpora-
ting probing data into the structure prediction 
algorithms of the ViennaRNA Package by means 
of Soft Constraints that guide the folding predic-
tion by adding position-, or motif-specific pseu-
do-energy contributions to the free energies of 
certain loop motifs. 
We have recently implemented previously pub-
lished methods to incorporate SHAPE probing 
data into the ViennaRNA Package [1], two of 
which include an ad-hoc conversion of SHAPE 
reactivities into pseudo free energies. Later ap-
proaches first convert reactivities into probabili-
ties of being (un)paired and compute pseudo 
energies from these likelihoods.

3. Probabilistic RNA folding 
The conversion of RNA structure probing data into 
pairing probabilities is not trivial. In fact, reactivity 
values measured for different structural contexts, 
e.g. paired and unpaired bases, are similar and can 
therefore not be well separated. Thus, there is no 
simple way to infer whether a given nucleotide  is 
paired just based on raw readout.
Using probing data for a reference RNA with known 
secondary structure, however, allows one to derive 
distributions of the measured reactivity values for 
different structural contexts. These distributions can 
then be fitted to a probability density model to 
compute for each nucleotide  the conditional 
probability                      to observe a reactivity         
given its structural context   . Eddy [3] already 
suggested to convert these conditional probabilities 
into a pseudo energy

To overcome the dependency on training data 
and thus abandon ad-hoc assumptions inherent 
in previous methods, the reactivity distribution 
of each distinguished structure context must be 
inferred from the data itself. Therefore, the 
observed reactivities, i.e. the mixture of distri-
butions, needs to be deconvoluted. This, how-
ever, is by far not an easy task.
Nevertheless, under the assumption that the 
RNA's structure ensemble is dominated by a 
single conformation we can use computed 
equilibrium probabilities        and  parameter-
ized model distributions      to obtain

i.e. the probability to observe          .
Moreover, the likelihood to observe the mea-
sured pattern of probing data is

Now, the aim is to find a parameterization for 
the distributions      that maximizes           .
We propose to iteratively use the posterior pro-
babilties                   as soft constraint to update 
the probabilities           for the next round. This 
strategy is then applied until convergence.

Normalized SHAPE reactivity
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and apply it to each derivation of the MFE algorithm, 
where   is added to a growing substructure. As a 
consequence, the soft constrained MFE structure 
maximizes the probability to observe to observe the 
probing data.

Fig. 2 SHAPE reactivity distributions for E.coli 23S rRNA.

Using Bayes' rule, the posterior probability of a 
structure context      given its reactivity          is

Still, the probabilities          and               are unknown 
a priori and can only be estimated from training data. 
An ad-hoc implementation of this idea is provided by 
the RME program [4].

In this self-consistent framework it is even 
possible to optimize for a combination of indi-
vidual probing techniques , such as Pb(II), 
SHAPE, DMS, PARS, etc.: 

In a PARS experiment, for example, rather than 
computing log-odds of nuclease S1 and V1 
treatment, their intensities can be indepen-
dently converted into pseudo energy contri-
butions.

5. Outlook
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