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The spatial structure of RNA plays an important role 
in genome regulation because it critically influences 
the interaction with proteins, and other nucleic acids. 
Knowledge of RNA structure is therefore crucial for 
understanding various biological processes.
Chemical and enzymatic probing methods provide 
information concerning the flexibility and accessibility 
at nucleotide resolution. As these methods are 
becoming a frequently used technology to 
experimentally determine RNA structure, for instance 
in terms of nucleotide-wise flexibility of the RNA 
backbone (SHAPE), there is increasing demand for 
efficient and accurate computational methods that 
incorporate probing data into secondary structure 
prediction. Existing implementations such algorithms, 
e.g. provided by the ViennaRNA Package, typically 
yield excellent prediction results for short sequences. 
However, accuracy decreases to between 40% and 
70% for long RNA sequences due to imperfection of 
the thermodynamic parameters, and inherent 
limitations of the secondary structure model, such as 
tertiary interactions, pseudoknots, ligand binding, or 
kinetic traps. To alleviate the gap in available 
computational tools we have developed a framework 
for incorporating probing data into the structure 
prediction algorithms of the ViennaRNA Package by 
means of soft constraints in order to improve 
prediction quality.

Soft constraints guide the folding prediction by adding 
position-, or motif-specific pseudo-energy 
contributions to the free energies of certain loop 
motifs. This amounts to a distortion of the equilibrium 
ensemble of structures in favour of those that are 
consistent with experimental data. Mismatching motifs 
are penalized by positive contributions, while 
structure patterns where prediction and experiment 
agree with each other receive a “bonus” in form of a 
negative pseudo-energy. Current methods for guided 
secondary structure prediction by means of soft 
constraints mainly focus on the incorporation of 
SHAPE reactivity data. For that purpose, three 
algorithms are available that aim to transform 
normalized SHAPE reactivity data into meaningful 
pseudo-energy terms.
The first approach that applied SHAPE directed RNA 
folding uses the simple linear ansatz

to convert SHAPE reactivity values to pseudo 
energies whenever a nucleotide  contributes to a 
stacked pair (Deigan et al., 2009). A positive slope     
penalizes high reactivities in paired regions, while a 
negative intercept    results in a confirmatory "bonus" 
free energy for correctly predicted base pairs.

A more consistent model considers nucleotide-wise 
experimental data in all loop energy evaluations 
(Zarringhalam et al., 2012). First, the observed SHAPE 
reactivity of nucleotide   is converted into the probability    
that position   is unpaired by means of a non-linear map. 
Then pseudo-energies of the form

are computed, where             if position    is considered 
unpaired and            if it is involved in a base pair. While 
the parameter    serves as scaling factor, the magnitude of 
discrepancy between prediction and experimental 
observation is represented by               .

A third, very distinct approach on incorporating SHAPE 
reactivity data to guide secondary structure prediction was 
suggested by Washietl et al. (2012). Here, the authors 
phrase the choice of the bonus energies as an optimization 
problem that aims to find a perturbation vector    of 
pseudo-energies that minimizes the discrepancy between 
the observed and predicted probabilities to see particular 
nucleotides unpaired,   and   , respectively. At the same 
time, the perturbation should be as small as possible.

The tradeoff between the two goals is naturally defined by 
the relative uncertainties inherent in the SHAPE 
measurements and the energy model. 
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Fig. 1 RNA secondary structure of yeast tRNA-asp 
annotated with experimentally determined SHAPE 
reactivities.

Fig. 2 RNA secondary structure of yeast tRNA-asp with indication 
where SHAPE reactivity derived pseudo-energies using the 
Deigan et al. approach are applied in the folding prediction. As a 
consequence of the method, pseudo-energies are applied twice 
for pairs inside a helix, and just once for terminal pairs.

Fig. 3 RNA secondary structure of yeast tRNA-asp where 
structural parts that receive a bonus(malus) energy according to 
the Zarringhalam et al. method are highlighted in red (paired 
nucleotides) and blue (unpaired nucleotides).
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Fig. 4 RNA secondary structure of yeast tRNA-asp with 
highlighted unpaired nucleotides that receive a pertubation 
pseudo-energy according the method of Washietl et al.

All three methods outlined above have been 
implemented into the ViennaRNA Package 2.2. 
Additional functionalities are available through the 
API of the ViennaRNA Library and the command line 
interface of RNAfold and RNAalifold. The novel 
standalone tool RNApvmin dynamically estimates a 
vector of pseudo-energies according to the method of 
Washietl et al. (2012), which can be used to guide 
structure prediction with RNAfold. This setup makes 
it easy for users to incorporate alternative ways of 
computing bonus energies, or to use the software 
with other types of probing data. Guided structure 
prediction has also been included into the 
ViennaRNA Websuite, a Web server providing an 
interface to many tools of the ViennaRNA Package, 
available at http://rna.tbi.univie.ac.at .

We applied all three methods to a benchmark set 
containing 24 triples of sequences, their known 
reference structures, and corresponding SHAPE 
data. In this set, reference structures were either 
derived from X-ray crystallography experiments, or 
predicted by comparative sequence analysis. The 
use of SHAPE data driven soft constraints leads to 
improved prediction results for many RNAs. 
However, for some of the RNAs within our 
benchmark data the additional pseudo-energy terms 
impair prediction results, possibly due to several 
factors. First, experimental data may be inaccurate, 
and second the underlying energy model excludes 
pseudoknotted structures, which are present in 
approximately half of the benchmarked RNAs. From 
our benchmark we conclude, that none of the three 
implemented methods consistently outperforms the 
other two in terms of prediction performance.

Normalized SHAPE reactivity
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Fig. 5 Secondary structure prediction of E.coli 5S rRNA from 
our benchmark data set. A Structure reference, B prediction 
by RNAfold with default parameters, and C prediction by 
RNAfold with guiding pseudo-energies obtained from 
SHAPE reactivity data using RNApvmin. Grey nucleotides 
correspond to missing SHAPE reactivity data.


