CONTROL OF RNA FUNCTION BY CONFORMATIONAL DESIGN CYCLING IN ENERGY AND DESIGN LANDSCAPES

Stefan Badelt

Department of Theoretical Chemistry Theoretical Biochemistry Group (tbi) University of Vienna

March 1st, 2016

OUTLINE

RNA modeling and RNA design Design of RNAs with prion-like behavior Design of self-processing ribozymes

Kinetics of RNA-RNA interactions

RNA STRUCTURE

GCGGAUUUAGCUCAGUUGGGAGAGCGCCAGACUGAAGAUCUGGAGGUCCUGUGUUCGAUCCACAGAAUUCGCACCA

A secondary structure is a list of base pairs, where:

- A base may participate in at most one base pair
- Base pairs must not cross (no pseudoknots)
- Only isosteric base-pairs (GC, AU, GU) are allowed.

THE NEAREST NEIGHBOR ENERGY MODEL

$$E(s) = \sum_{l \in s} e(l)$$

ENERGY LANDSCAPES

An energy landscape is defined by

- Conformation space $s \in \Omega$
- Neighborhood relation [Move set] M(s)
- Energy function *E*(*s*)

RNA STRUCTURE REPRESENTATION

A secondary structure is a list of base pairs, where:

- A base may participate in at most one base pair
- Base pairs must not cross (no pseudoknots)
- Only isosteric base-pairs (GC, AU, GU) are allowed.

THE NEAREST NEIGHBOR ENERGY MODEL

ENERGY LANDSCAPES

$$Z = \sum_{s \in \Omega} e^{\frac{-E(s)}{kT}} \quad G = -kT \ln Z \quad P(s) = \frac{e^{-E(s)/kT}}{Z}$$

COMPUTATIONAL RNA DESIGN FROM STRUCTURE(S) TO SEQUENCE

GCGGAUUUAGC UCAGUUGGGAG AGCGCCAGACU GAAGAUCUGGA GGUCCUGUGUU CGAUCCACAGA AUUCGCACCA

The objective function $\Phi(\sigma)$ can vary structure is MFE of sequence, maximize probability of structure, ...

RNA DESIGN IS FORMALLY HARD, BUT EASY IN PRACTICE

... simple adaptive walks usally lead to satisfactory solutions

DEPENDENCY GRAPHS FOR BISTABLE RNA DESIGN

C. Flamm, I.L. Hofacker, S. Maurer-Stroh, P.F. Stadler, and M. Zehl. **Design of multi-stable RNA molecules.** RNA, 7:254–265, 2001

ON THE FUNCTION OF RIBOSWITCHES

CAN WE DEMONSTRATE AUTOCATALTYIC COFORMATIONAL SELF-REPLICATION?

THE MECHANISM OF A PRION

Aguzzi, A., Sigurdson, C., and Heikenwaelder, M. (2008). **Molecular mechanisms of prion pathogenesis.** Annual Review of Pathology: Mechanisms of Disease, 3, 11–40.

PRION DESIGN PIPELINE

[switch.pl]

thermodynamic candidate molecules

[RNAsubopt + barriers] (M)
[findpath] (H)

[RNAsubopt + barriers] (D)

final ranking of molecules

FOLDING BARRIERS WITH AND WITHOUT AUTO-CATALYSIS

Badelt, C. Flamm, and I.L. Hofacker. Computational design of a circular RNA with prionlike behavior. Artificial Life 22, pages 1–14, 2016

S.

CAN AN RNA CIRCULARIZE ITSELF?

DESIGN OF SELF-PROCESSING RNA

- compute a set of candidate molecules (switch.pl)
- maximize probabilities to form reactive conformations
- optimize towards reactive monomers and/or dimers

TABLE 3. AFM contour-length measurements and their implications on the ratio between monomers (M), dimers (D) and trimers (T)

Species length	AFM contour-length measurements (nm)				
Number of bases	CRZ-2 I-83mer	CRZ-2	PBD1	PBD4	
M (83–103/105)	_	6.8 ± 0.7	6.2 ± 0.7	6.3 ± 0.7	
	_	9.5 ± 0.4	9.3 ± 0.7	8.3 ± 0.9	
	13.4 ± 1.9	12.3 ± 1.1	13.8 ± 1.3	14.2 ± 1.0	
D (166–186/188)	_	17.2 ± 0.4	19.0 ± 1.7	20.0 ± 1.0	
	24.5 ± 1.7	22.7±0.6	24.5 ± 1.0	24.0 ± 0.9	
T (249–269/271)	_	_	31.7 ± 0.9	29.6 ± 0.7	
	36.5 ± 3.2	_	36.5 ± 0.7	34.8 ± 0.5	
Ratio (M:D:T)	2:1.5:1	7.4:1:0	10:2.8:1	4.5:1:1	
Bold ratio only (M:D:T)	2:1.5:1	6:1:0	9.5:4:1	2.5:1:1	

DISSOCIATION BARRIERS DETERMINE EFFICIENCY

RNA	103nt	91-97nt	83nt	circ83nt	> 83nt
CRZ2	-	+++	++	-	6×
PBD1	-	-	-	+++	$2 \times$
PBD2	+	+	-	++	4 ×
PBD3	+	+	-	+	2×
PBD4	++	+	-	+	2×

free energy (activation energy)

RESULTS

- RNA (in theory) capable of conformational self-replication
- ribozymes can be designed to ligate themselves
- energy barriers for dissociation are important for design
- experimental data to model interactions of ribozymes

SUMMARY

THANKS TO

Advisers: Ivo L. Hofacker, Christoph Flamm PhD Committee: Sabine Müller, Peter F. Stadler ViennaRNA package: Ronny Lorenz self-processing RNA: Sonja Petkovic, Stephan Block cotranscriptional folding/design: Peter Kerpedjiev, Stefan Hammer, Andrea Tanzer, Michael T. Wolfinger, Michael Jantsch, Konstantin Licht, Mansoureh Tajaddod

RNA design: Mario Mörl, Regula Arreger

This research was funded in parts by the FWF International Programme I670, the DK RNA program FG748004 and the FWF project "SFB F43 RNA regulation of the transcriptome".

THE AWESOME TBI

RNA-RNA INTERACTIONS

ENERGY LANDSCAPES

Christoph Flamm, Walter Fontana, Ivo L Hofacker, and Peter Schuster **RNA folding at elementary step resolution.** RNA, 6:325–338, 2000.

Michael T. Wolfinger, Andreas Svrcek-Seiler, Christoph Flamm, Ivo L. Hofacker, and Peter F. Stadler. **Efficient computation of RNA folding dynamics.** Journal of Physics A: Mathematical and General, 37:4731–4741, 2004.

KINETICS

Calculate transition rates from energy barriers $\Delta G^{\ddagger} = E(s_j) - E(s_i)$

$$k_{ij} = \begin{cases} k_0 & \text{if } \Delta G^{\ddagger} \leq 0\\ k_0 e^{-\frac{\Delta G^{\ddagger}}{RT}} & \text{otherwise} \end{cases}$$

... where k_0 is a constant to relate folding to wall-clock time

N. Metropolis, A.W. Rosenbluth, M.N. Rosenbluth, A.H. Teller, and E. Teller. **Equation of state** calculations by fast computing machines. The Journal of Chemical Physics, 21(6):1087–1092, 1953.

THE MASTER EQUATION

$$\frac{dP_i(t)}{dt} = \sum_{i \neq j} (P_j(t)k_{ji} - P_i(t)k_{ij})$$

... together with the rate of gradient basin transitions ...

$$k_{\alpha\beta} = \sum_{i\in\alpha}\sum_{j\in\beta}P(i|\alpha)k_{ij}$$

... can be solved for 60-80 nucleotides sequence length

