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Compilation and verification of nucleic acid reaction networks
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CRN-to-DSD translation schemes: reaction enumeration: prove/disprove CRN equivalence:The big picture:
Toehold-mediated strand displacement serves as a molecular architecture 
to implement algorithmic behavior with DNA interaction networks. Input 
DNA triggers a series of conformational changes in present DNA 
complexes, eventually releasing previously caged output DNA. Our 
compiler Nuskell [1] automates the translation of formal chemical reaction 
networks (CRNs) into domain-level strand displacement (DSD) circuits. A 
notion of correctness is established on a case-by-case basis using the rate-
independent, stochastic-level theories of pathway decomposition 
equivalence [2] and/or CRN bisimulation [3]. Although no notion of the 
correctness of kinetic behavior is supported yet, the compiler automatically 
generates simulation code based on a sequence-independent model of DNA 
strand displacement biophysics [4]. Future versions will include sequence-
level design and sequence-level analysis of DSD systems [5].

On the domain-level, we have to consider a diverse set of 
reactions in order to compensate for the fine-grained details 
that can happen on the sequence level. Nuskell uses a 
domain-level reaction enumerator [4] to predict desired and 
undesired reactions that can emerge from previously 
compiled signal and fuel species. Enumeration semantics are 
justified based on the assumption that the DSD system is 
operated at sufficiently low concentrations, such that 
unimolecular reactions always go to completion before the 
next bimolecular interaction takes place. In order to reduce 
the size of the enumerated reaction network, transient states 
(e.g. only the toehold bound) cannot engage in further 
downstream reactions.

A translation scheme is an algorithm to translate a formal 
CRN into a set of signal and fuel species. Signal species are at 
low concentrations and they present the information (input/
output) unit. Fuel species are at high (ideally constant) 
concentrations and they mediate the information transfer by 
consuming and/or releasing signal species. After compilation, 
every species in the formal CRN has a corresponding signal 
species. All signal species must have the same domain-level 
constitution and structure, and they need to be independent 
from each other. Translation schemes may be particularly 
efficient for certain types of formal reactions but inefficient or
incorrect for other types, or they can be correct for every 
possible formal CRN at the cost of being less efficient. 

The most fundamental requirement towards compilation of 
large DSD systems is verification. Every translation scheme 
translates single formal reactions into a multiple 
implementation reactions. Thus, there are many possibilities 
to introduce “bugs”, i.e. unwanted side reactions that alter the 
implemented algorithm. We include two case-by-case 
verification strategies that compare formal CRNs with their 
implementations. 
As intended, our approach does not verify the general 
correctness of a particular scheme, but supports the notion 
that particular implementations have to be correct. Two 
notions are currently implemented in the Nuskell compiler: 
pathway decomposition [2] and CRN bisimulation [3]. 

Compilation of a dual-rail implementation of a logic circuit computing the floor 
of the square root of a 4-bit binary number.

First, the logic circuit was translated into a CRN that consists of 32 uni- and 
bimolecular reactions, second, the CRN was compiled using Nuskell. The 
condensed enumerated reaction network has 316 species (52 signal species, 92 
fuel species, 172 intermediate species), 180 reactions, and it verifies as correct 
according to pathway equivalence and CRN bisimulation. The simulations for 
four calculations are shown: 0000, 0001, 0100, 1001. Domain-level kinetic 
modeling calculates a computation time on the order of 27 hours.y2
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# A digital AND/OR/NOT circuit formulated as CRN.
# The CRN computes the floor of the squareroot of a four-bit binary number.

# Fanout X3 -> F5 + F6
X3_OFF -> F5_OFF + F6_OFF + F7_OFF
X3_ON  -> F5_ON  + F6_ON  + F7_ON
# Fanout X4 -> F7 + F8
X4_OFF -> F8_OFF + F9_OFF + F10_OFF
X4_ON  -> F8_ON  + F9_ON  + F10_ON
# G11 = NOT(X1 OR X2) + Fanout G11 -> F14 + F15
X1_OFF + X2_OFF -> F14_ON  + F15_ON
X1_OFF + X2_ON  -> F14_OFF + F15_OFF
X1_ON  + X2_OFF -> F14_OFF + F15_OFF
X1_ON  + X2_ON  -> F14_OFF + F15_OFF
# G12 = F6 AND (NOT F9)
F6_OFF + F9_OFF -> G12_OFF
F6_OFF + F9_ON  -> G12_OFF
F6_ON  + F9_OFF -> G12_ON
F6_ON  + F9_ON  -> G12_OFF
# Y2 = F7 OR F10
F7_OFF + F10_OFF -> Y2_OFF
F7_OFF + F10_ON  -> Y2_ON
F7_ON  + F10_OFF -> Y2_ON
F7_ON  + F10_ON  -> Y2_ON

# G16b = F5 AND F8
F5_OFF + F8_OFF -> G16b_OFF
F5_OFF + F8_ON  -> G16b_OFF
F5_ON  + F8_OFF -> G16b_OFF
F5_ON  + F8_ON  -> G16b_ON
# G16 = NOT(F14 AND G16b)
F14_OFF + G16b_OFF -> G16_ON
F14_OFF + G16b_ON  -> G16_ON
F14_ON  + G16b_OFF -> G16_ON
F14_ON  + G16b_ON  -> G16_OFF
# G17 = F15 OR G12
F15_OFF + G12_OFF -> G17_OFF
F15_OFF + G12_ON  -> G17_ON
F15_ON  + G12_OFF -> G17_ON
F15_ON  + G12_ON  -> G17_ON
# Y1 = NOT(G16 AND G17)
G16_OFF + G17_OFF -> Y1_ON
G16_OFF + G17_ON  -> Y1_ON
G16_ON  + G17_OFF -> Y1_ON
G16_ON  + G17_ON  -> Y1_OFF
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Pathway decompositon equivalent: CRN bisimulation equivalent: 
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Information processing nucleic acid network

High-level languages: Turing machines, digital circuitry, ...
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# Translate formal reactions with two reactants and two products.
# Lakin et. al (2012) "Abstractions for DNA circuit design." [Figure 5]

# Define a global short toehold domain
global toehold = short();

# Write a class to define domains and structure of signal species
class formal(s) = "? t f" | ". . ."
  where { t = toehold ; f = long() };

# Write a class to produce fuel complexes for bimolecular reactions
class bimol_fuels(r, p) = 
  [ "a t i + b t j + k t c + l t d + t* l* t* k* t* b* t* a* t*" 
  | "( ( . + ( ( . + ( ( . + (  ( . + ) )  )  )  )  )  )  )  . ",
    "t k t l t" | ". . . . .",
    "a t i" | " . . . ", "b t j" | " . . . " ] # additional fuels
  where {
    a = r[0].f; 
    b = r[1].f; 
    c = p[0].f; k = long();
    d = p[1].f; l = long();
    i = long(); j = long();
    t = toehold };

# Write a module that applies the fuel production to every reaction
module rxn(r) = sum(map(infty, fuels))
  where fuels = 
    if len(r.reactants) != 2 or len(r.products) != 2 then
      abort('Reaction type not implemented')
     else
      bimol_fuels(r.reactants, r.products);

# Write the module *main* that applies *rxn* to the crn.
module main(crn) = sum(map(rxn, crn)) 
  where crn = irrev_reactions(crn);
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