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The big picture: CRN-to-DSD translation schemes: reaction enumeration: prove/disprove CRN equivalence:
Toehold-mediated strand displacement serves as a molecular architecture A translation scheme is an algorithm to translate a formal On the domain-level, we have to consider a diverse set of The most fundamental requirement towards compilation of
to implement algorithmic behavior with DNA interaction networks. Input CRN into a set of signal and fuel species. Signal species are at reactions in order to compensate for the fine-grained details large DSD systems is verification. Every translation scheme
DNA triggers a series of conformational changes in present DNA low concentrations and they present the information (input/ that can happen on the sequence level. Nuskell uses a translates single formal reactions into a multiple
complexes, eventually releasing previously caged output DNA. Our output) unit. Fuel species are at high (ideally constant) domain-level reaction enumerator [4] to predict desired and implementation reactions. Thus, there are many possibilities
compiler Nuskell [1] automates the translation of formal chemical reaction concentrations and they mediate the information transfer by undesired reactions that can emerge from previously to introduce “bugs”, i.e. unwanted side reactions that alter the
networks (CRNs) into domain-level strand displacement (DSD) circuits. A consuming and/or releasing signal species. After compilation, compiled signal and fuel species. Enumeration semantics are implemented algorithm. We include two case-by-case
notion of correctness is established on a case-by-case basis using the rate- every species in the formal CRN has a corresponding signal justified based on the assumption that the DSD system is verification strategies that compare formal CRNs with their
independent, stochastic-level theories of pathway decomposition species. All signal species must have the same domain-level operated at sufficiently low concentrations, such that implementations.
equivalence [2] and/or CRN bisimulation [3]. Although no notion of the constitution and structure, and they need to be independent unimolecular reactions always go to completion before the As intended, our approach does not verify the general
correctness of kinetic behavior is supported yet, the compiler automatically from each other. Translation schemes may be particularly next bimolecular interaction takes place. In order to reduce correctness of a particular scheme, but supports the notion
enerates simulation code based on a sequence-independent model of DNA efficient for certain types of formal reactions but inefficient or the size of the enumerated reaction network, transient states that particular implementations have to be correct. Two
g q p
strand displacement biophysics [4]. Future versions will include sequence- incorrect for other types, or they can be correct for every (e.g. only the toehold bound) cannot engage in further notions are currently implemented in the Nuskell compiler:
level design and sequence-level analysis of DSD systems [5]. possible formal CRN at the cost of being less efficient. downstream reactions. pathway decomposition [2] and CRN bisimulation [3].
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