
http://www.dna.caltech.edu/~badelt
badelt@caltech.edu

Caltech Biology and Biological Engineering Division Fellowship
NSF Grant CCF-1213127
NSF Grant CCF-1317694 (“The Molecular Programming Project”)
The Gordon and Betty Moore Foundation's Programmable Molecular Technology Initiative (PMTI)

Compilation and verification of nucleic acid reaction networks

a b a*

a*

a
b

a*

a a

a*

binding / unbinding

b

b* a

a*
c*

d* d

a

a* b

b*
c b

b*

a

a*

c c*

d* d

a

a*

b

b*

4-way branch-migration
c
c* c*a*a*

toehold-occlusion
c

b
a

a* b*

ba

a* b*

b
c

c*c*

c

3-way branch-migration

b

domain-level strand displacement pathway

c*a*

c

c*

c

0-toehold-branch-migration

c*a*

cc

c*a*

c
c

remote-toehold branch-migration

10 1 100 101 102 103 104 105

Time [sec]

0

20

40

60

80

100

C
on

ce
nt

ra
tio

n
[n

M
]

[X 4,X 3,X 2,X 1]=0000→ [Y2,Y1]=00

Gates

X OFF
1

X ON
1

X OFF
2

X ON
2

X OFF
3

X ON
3

X OFF
4

X ON
4

YOFF
1

YON
1

YOFF
2

YON
2

other

10 1 100 101 102 103 104 105

Time [sec]

0

20

40

60

80

100

C
on

ce
nt

ra
tio

n
[n

M
]

[X 4,X 3,X 2,X 1]=0001→ [Y2,Y1]=01

Gates

X OFF
1

X ON
1

X OFF
2

X ON
2

X OFF
3

X ON
3

X OFF
4

X ON
4

YOFF
1

YON
1

YOFF
2

YON
2

other

10 1 100 101 102 103 104 105

Time [sec]

0

20

40

60

80

100

C
on

ce
nt

ra
tio

n
[n

M
]

[X 4,X 3,X 2,X 1]=1001→ [Y2,Y1]=11

Gates

X OFF
1

X ON
1

X OFF
2

X ON
2

X OFF
3

X ON
3

X OFF
4

X ON
4

YOFF
1

YON
1

YOFF
2

YON
2

other

10 1 100 101 102 103 104 105

Time [sec]

0

20

40

60

80

100

C
on

ce
nt

ra
tio

n
[n

M
]

[X 4,X 3,X 2,X 1]=0100→ [Y2,Y1]=10

Gates

X OFF
1

X ON
1

X OFF
2

X ON
2

X OFF
3

X ON
3

X OFF
4

X ON
4

YOFF
1

YON
1

YOFF
2

YON
2

other

CRN-to-DSD translation schemes: reaction enumeration: prove/disprove CRN equivalence:The big picture:
Toehold-mediated strand displacement serves as a molecular architecture
to implement algorithmic behavior with DNA interaction networks. Input
DNA triggers a series of conformational changes in present DNA
complexes, eventually releasing previously caged output DNA. Our
compiler Nuskell [1] automates the translation of formal chemical reaction
networks (CRNs) into domain-level strand displacement (DSD) circuits. A
notion of correctness is established on a case-by-case basis using the rate-
independent, stochastic-level theories of pathway decomposition
equivalence [2] and/or CRN bisimulation [3]. Although no notion of the
correctness of kinetic behavior is supported yet, the compiler automatically
generates simulation code based on a sequence-independent model of DNA
strand displacement biophysics [4]. Future versions will include sequence-
level design and sequence-level analysis of DSD systems [5].

On the domain-level, we have to consider a diverse set of
reactions in order to compensate for the fine-grained details
that can happen on the sequence level. Nuskell uses a
domain-level reaction enumerator [4] to predict desired and
undesired reactions that can emerge from previously
compiled signal and fuel species. Enumeration semantics are
justified based on the assumption that the DSD system is
operated at sufficiently low concentrations, such that
unimolecular reactions always go to completion before the
next bimolecular interaction takes place. In order to reduce
the size of the enumerated reaction network, transient states
(e.g. only the toehold bound) cannot engage in further
downstream reactions.

A translation scheme is an algorithm to translate a formal
CRN into a set of signal and fuel species. Signal species are at
low concentrations and they present the information (input/
output) unit. Fuel species are at high (ideally constant)
concentrations and they mediate the information transfer by
consuming and/or releasing signal species. After compilation,
every species in the formal CRN has a corresponding signal
species. All signal species must have the same domain-level
constitution and structure, and they need to be independent
from each other. Translation schemes may be particularly
efficient for certain types of formal reactions but inefficient or
incorrect for other types, or they can be correct for every
possible formal CRN at the cost of being less efficient.

The most fundamental requirement towards compilation of
large DSD systems is verification. Every translation scheme
translates single formal reactions into a multiple
implementation reactions. Thus, there are many possibilities
to introduce “bugs”, i.e. unwanted side reactions that alter the
implemented algorithm. We include two case-by-case
verification strategies that compare formal CRNs with their
implementations.
As intended, our approach does not verify the general
correctness of a particular scheme, but supports the notion
that particular implementations have to be correct. Two
notions are currently implemented in the Nuskell compiler:
pathway decomposition [2] and CRN bisimulation [3].

Compilation of a dual-rail implementation of a logic circuit computing the floor
of the square root of a 4-bit binary number.

First, the logic circuit was translated into a CRN that consists of 32 uni- and
bimolecular reactions, second, the CRN was compiled using Nuskell. The
condensed enumerated reaction network has 316 species (52 signal species, 92
fuel species, 172 intermediate species), 180 reactions, and it verifies as correct
according to pathway equivalence and CRN bisimulation. The simulations for
four calculations are shown: 0000, 0001, 0100, 1001. Domain-level kinetic
modeling calculates a computation time on the order of 27 hours.y2

1

y2
0

x3
1

x4
0

x4
1

y1
0

x3
0

x2
1

x2
0

x1
1

x1
0

y1
1

Stefan Badelt1, Seung Woo Shin1, Robert Johnson1, Qing Dong2, Chris Thachuk1 and Erik Winfree1

1: California Institute of Technology, Pasadena, USA, 2: Stony Brook University, New York, USA

[1] Badelt, S., Shin, S.W., Johnson, R.F., Dong, Q., Thachuk, C. and Winfree, E., 2017. A general-purpose CRN-to-DSD compiler with formal verification, optimization, and simulation capabilities. International Conference on DNA-Based Computers.
[2] Shin, S.W., Thachuk, C. and Winfree, E., 2017. Verifying chemical reaction network implementations: A pathway decomposition approach. Theoretical Computer Science.

A digital AND/OR/NOT circuit formulated as CRN.
The CRN computes the floor of the squareroot of a four-bit binary number.

Fanout X3 -> F5 + F6
X3_OFF -> F5_OFF + F6_OFF + F7_OFF
X3_ON -> F5_ON + F6_ON + F7_ON
Fanout X4 -> F7 + F8
X4_OFF -> F8_OFF + F9_OFF + F10_OFF
X4_ON -> F8_ON + F9_ON + F10_ON
G11 = NOT(X1 OR X2) + Fanout G11 -> F14 + F15
X1_OFF + X2_OFF -> F14_ON + F15_ON
X1_OFF + X2_ON -> F14_OFF + F15_OFF
X1_ON + X2_OFF -> F14_OFF + F15_OFF
X1_ON + X2_ON -> F14_OFF + F15_OFF
G12 = F6 AND (NOT F9)
F6_OFF + F9_OFF -> G12_OFF
F6_OFF + F9_ON -> G12_OFF
F6_ON + F9_OFF -> G12_ON
F6_ON + F9_ON -> G12_OFF
Y2 = F7 OR F10
F7_OFF + F10_OFF -> Y2_OFF
F7_OFF + F10_ON -> Y2_ON
F7_ON + F10_OFF -> Y2_ON
F7_ON + F10_ON -> Y2_ON

G16b = F5 AND F8
F5_OFF + F8_OFF -> G16b_OFF
F5_OFF + F8_ON -> G16b_OFF
F5_ON + F8_OFF -> G16b_OFF
F5_ON + F8_ON -> G16b_ON
G16 = NOT(F14 AND G16b)
F14_OFF + G16b_OFF -> G16_ON
F14_OFF + G16b_ON -> G16_ON
F14_ON + G16b_OFF -> G16_ON
F14_ON + G16b_ON -> G16_OFF
G17 = F15 OR G12
F15_OFF + G12_OFF -> G17_OFF
F15_OFF + G12_ON -> G17_ON
F15_ON + G12_OFF -> G17_ON
F15_ON + G12_ON -> G17_ON
Y1 = NOT(G16 AND G17)
G16_OFF + G17_OFF -> Y1_ON
G16_OFF + G17_ON -> Y1_ON
G16_ON + G17_OFF -> Y1_ON
G16_ON + G17_ON -> Y1_OFF

[3] Johnson, R., Dong, Q. and Winfree, E., 2018. Verifying chemical reaction network implementations: a bisimulation approach. Theoretical Computer Science.

[3] C. Grun, K. Sarma, B. Wolfe, SW Shin, and E. Winfree (2015). A domain-level DNA strand displacement reaction enumerator allowing arbitrary non-pseudoknotted secondary structures. arXiv preprint arXiv:1505.03738

[4] L. Qian, et al. (2011) LNCS, 6518: 123–140. [5] L. Cardelli (2011) Natural Computing, 10(1): 407–428. [6] L. Cardelli (2013) Math Struct Comp Sci, 23(2):247–271.
[7] M. R. Lakin, et al. (2012) J R Soc Interface 9(68): 470–486. [8] D. Soloveichik, et al. (2010) PNAS, 107(12):5393–5398. [9] N. Srinivas (2015) PhD Thesis, Caltech.

Pathway decompositon equivalent: CRN bisimulation equivalent:

20 40 60 80 100 120

reactions in condensed network

600

800

1000

1200

1400

1600

1800

n
u

m
b

e
r

o
f

n
u

cl
e

o
tid

e
s

Translation scheme

soloveichik2010.ts

cardelli2011_FJ.ts

cardelli2011_FJ_noGC.ts

cardelli2011_NM.ts

cardelli2011_NM_noGC.ts

qian2011_3D_var1.ts

lakin2012_3D.ts

lakin2012_3D_var1.ts

cardelli2013_2D_3I.ts

cardelli2013_2D_3I_noGC.ts

chen2013_2D_JF_var1.ts

lakin2016_2D_3I.ts

srinivas2015.ts

[4] Grun, C., Sarma, K., Wolfe, B., Shin, S.W. and Winfree, E., 2015. A domain-level DNA strand displacement reaction enumerator allowing arbitrary non-pseudoknotted secondary structures. arXiv preprint arXiv:1505.03738.
[5] Berleant, J., Berlind, C., Badelt, S., Dannenberg, F., Schaeffer, J. and Winfree, E., 2018. Automated sequence-level analysis of kinetics and thermodynamics for domain-level DNA strand-displacement systems. Journal of the Royal Society Interface.

a t
x

x t b

x* t*t*

x
bt

x

t*t* x*

ta

x

t*t* x*

ta
x

btx t b

x* t*t*

a t
x

x t b

x* t*t*

a t x

bind 3-way branch migration unbind

A B
F1 F2

+ +

i1 i2

Domain-level Reaction Networks

3' end

5' end

detailed reaction
condensed reactions

branch-migration domain:
long, binds irreversibly
toehold domain:
short, binds reversibly

DSD sytem specification

signal species (low concentation): {A, B}
fuel species (high concentration): {F1, F2}

a t
xA

x
btB

x t b

x* t*t* F1

x

t*t* x*

ta
F2

a t
x

x t b

x* t*t*

x
bt

x

t*t* x*

ta

A B
F1 F2

+ +

CRN trajectory
equivalence

CRN condensation

CRN enumeration

nucleotide
sequences

x

t*t* x*

ta
x

btx t b

x* t*t*

a t
x

x t b

x* t*t*

a t x

bind

3-way branch migration

unbind

a t
x

x t b

x* t*t*

x
bt

x

t*t* x*

ta

A B
F1 F2

+ +

i1

i2

i3

KinDA project [5]

nucleotide-level reaction rates

a t
x

x t b

x* t*t*

x
bt

x

t*t* x*

ta

A B
F1 F2

+ +

Nuskell project [1] Peppercorn project [4]

a t
xA

+
x

t*t* x*

ta
F2

x

t*t* x*

ta
a

xt

condensed reaction rates

domain-level reaction rates

[2,3]

Information processing nucleic acid network

High-level languages: Turing machines, digital circuitry, ...

tr
a
n

sl
a
ti

o
n

(s
y
st

e
m

 d
e
sc

ri
p
ti

o
n
)

v
e
rifi

ca
tio

n
(sy

ste
m

 b
e
h
a
v
io

r)

fCRN

DSD

NSS

dCRN

(sCRN)

deterministic / stochastic

deterministic / stochastic

deterministic / stochastic

determintistic
compilation

nucleic acid
sequence

design

enumeration coarse-grained
kinetics

chemical kinetics

secondary structure kinetics

trace
equiv.

trace
equiv.

rate
equiv.

rate
equiv.

Translate formal reactions with two reactants and two products.
Lakin et. al (2012) "Abstractions for DNA circuit design." [Figure 5]

Define a global short toehold domain
global toehold = short();

Write a class to define domains and structure of signal species
class formal(s) = "? t f" | ". . ."
 where { t = toehold ; f = long() };

Write a class to produce fuel complexes for bimolecular reactions
class bimol_fuels(r, p) =
 ["a t i + b t j + k t c + l t d + t* l* t* k* t* b* t* a* t*"
 | "((. + ((. + ((. + ((. +)))))))) . ",
 "t k t l t" | ".",
 "a t i" | " . . . ", "b t j" | " . . . "] # additional fuels
 where {
 a = r[0].f;
 b = r[1].f;
 c = p[0].f; k = long();
 d = p[1].f; l = long();
 i = long(); j = long();
 t = toehold };

Write a module that applies the fuel production to every reaction
module rxn(r) = sum(map(infty, fuels))
 where fuels =
 if len(r.reactants) != 2 or len(r.products) != 2 then
 abort('Reaction type not implemented')
 else
 bimol_fuels(r.reactants, r.products);

Write the module *main* that applies *rxn* to the crn.
module main(crn) = sum(map(rxn, crn))
 where crn = irrev_reactions(crn);

? t f

formal(s) =

t*

t t t t

t* t* t* t*

a
i

b
k

ch
c

dh
d

dh*ch*b*a*
ta i t t tch dh

?
?

t
t

d1
d2

d1 d2
d2 d2

t t t t

t*t*t*t*t*

d3 d4
d5 d6

d6*d5*d2*d1*

td1 d3 t t td5 d6

