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RNA and artificial life

RNA world theory

genetic material + enzymatic function

RNA functional diversity
around 1980 discovery of catalytic RNA O @) o

around 2000 Ribosome is an RNA Enzyme

miRNA as regulatory elements to inhibit translation

Complexity of Organisms
e.g. ratio RNA/Protein scales with complexity
2006: ENCODE, practically whole genome is transcribed

RNA synthetic biology
engineering devices for altered gene expression
aptazymes (switches + ribozymes) to control gene expression

self-replicating RNA  pyottom up Artificial life
self-polymerizing RNA . ired b t
self-switching RNA Inspired by nature



Prions and conformational self-replication
Prions are proteins known to be the infectious agents for several
neurological diseases (e.g. Altzheimer, Creuzfeld-Jakob, ...)

The “protein only hypothesis’ states that a single mis-folded
infectious prion can convert the other correctly folded proteins to

the infectious agent.
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Can we design a minimal RNA with prion-like behavior?



Prions and conformational self-replication

Requirements for an RNA prion Energy Landscape
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Prions and conformational self-replication

Requirements for an RNA prion

Energy Landscape

maximize refolding barrier
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Computational RNA folding

Sequence = Structure
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Computational RNA design
Structure = Sequence (inverse of RNA folding problem)

Simplest case: Find a sequence that forms a predefined structure
= structure is the MFE of the designed sequence
= maximize probability of the desired structure

= sequence must be biologically reasonable (GC content)

Even harder: Find a sequence that forms two predefined structures

= sequence must be bi-stable (like a Prion)



Computational Prion design

e switch.pl with two conformations and HIV-Dis loop
e COCCCC . (OO e 2D2)0 0220200 ..0)000)))
CCCCCCCannnnnnn. )DDDDDD N (€ (€ € CIANF 1)) .
NNNNNNNAACCGACGANNNNNNNNNNNNNNNNNAACGUCGGANNNNNNN

¢ Generate lots of sequences (128 different results)

e Select candidate with required prion features



Evaluation of prion-like behavior
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Zpy ... Partition function of the Monomer
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... Partition function constrained that c1 (cyan) is unpaired
... Partition function constrained that c2 (green) is unpaired
... Partition function constrained that S1 can form
... Partition function constrained that S2 can form

. Partition function constrained that duplex can form



Evaluation of prion-like behavior

® 7y ... Partition function of the Monomer

® 7. ... Partition function constrained that c1 (cyan) is unpaired
® Z., ... Partition function constrained that c2 (green) is unpaired
® Zsy ... Partition function constrained that S1 can form
® Zs, ... Partition function constrained that S2 can form

® Zgup ... Partition function constrained that duplex can form



Evaluation of prion-like behavior
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Partition function of the Dimer:
Zp =Zey* Zep * Zayp
Partition function of all Structures that are neither S1 nor S2:
Zisig1s2 =2y — Zs1 — Zs2
Equilibrium Constant for Dimerization: [M]+[M] < [D]
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Evaluation of prion-like behavior
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Evaluation of prion-like behavior
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Evaluation of prion-like behavior

S1 and S2 are separated by a high energy barrier:
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Evaluation of prion-like behavior

S2 catalyzes reaction from S1 to S2:
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Evaluation of prion-like behavior

S2 catalyzes reaction from S1 to S2:
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Summary

RNAprions are a from of conformational self-replication

Computatinal RNA folding and design

HIV-Dis loops can be used to favor the infectious
conformation for dimers

Different energy models for refolding pathways all show that
S2 can act as a catalyst
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Computational RNA folding

GCGGAUUUAGCUCAGUUGGGAGAGCGCCAGACUGAAGAUCUGGAGGUCCUGUGUUCGAUCCACAGAAUUCGCACCA

A secondary structure is a list of base pairs (i, ), where:
® A base may participate in at most one base pair.
e Base pairs must not cross,
i.e., no two pairs (/,/) and (k,/) may have i < k < j < I.
® Only isosteric base-pairs GC, CG, AU, UA, GU, UG are allowed.
Hairpin loops have at least length 3 (|j — i| > 3)
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Computational RNA folding
ONW <

‘H : Hairpin loop

Z : Interior loop
M: Multi loop

E(S) =Y E(I)

les

Nearest Neighbor Energy Model: The free energy E of a secondary
structure S is the sum of the energies of its loops /

e Energies depend on loop type and size,
with some sequence dependence.

e Most relevant parameters are measured experimentally.
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Computational RNA design

switch.pl in a nutshell:

e build a dependency graph
e mutate an initial sequence guided by dependency graph

e accept/reject mutations according to a cost function
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Cost Function:
= E(x,S1) + E(x, ) — 2G(x) + £(E(x, S1) — (E(x, S2) + ¢€))?
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