ENERGY LANDSCAPES AND FOLDING KINETICS OF PAIRWISE INTERACTING RNAS

Stefan Badelt¹, Christoph Flamm², Ivo L. Hofacker²

(1) DNA and Natural Algorithms Group, California Institute of Technology

(2) Theoretical Biochemistry Group (tbi), University of Vienna Munich, Sept, 5th, 2016

OUTLINE

RNA modeling and RNA energy landscapes Coarse grained RNA folding kinetics Folding kinetics of RNA-RNA interactions Analysis of toehold-mediated interactions

RNA STRUCTURE

GCGGAUUUAGCUCAGUUGGGAGAGCGCCAGACUGAAGAUCUGGAGGUCCUGUGUUCGAUCCACAGAAUUCGCACCA

A secondary structure is a list of base pairs, where:

- A base may participate in at most one base pair
- Base pairs must not cross (no pseudoknots)
- Only isosteric base-pairs (GC, AU, GU) are allowed.

THE NEAREST NEIGHBOR ENERGY MODEL

$$E(s) = \sum_{l \in s} e(l)$$

ENERGY LANDSCAPES

An energy landscape is defined by

- Conformation space $s \in \Omega$
- Neighborhood relation [Move set] M(s)
- Energy function *E*(*s*)

RNA STRUCTURE REPRESENTATION

A secondary structure is a list of base pairs, where:

- A base may participate in at most one base pair
- Base pairs must not cross (no pseudoknots)
- Only isosteric base-pairs (GC, AU, GU) are allowed.

THE NEAREST NEIGHBOR ENERGY MODEL

ENERGY LANDSCAPES

ENERGY LANDSCAPES

Christoph Flamm, Walter Fontana, Ivo L Hofacker, and Peter Schuster **RNA folding at elementary step resolution.** RNA, 6:325–338, 2000.

Michael T. Wolfinger, Andreas Svrcek-Seiler, Christoph Flamm, Ivo L. Hofacker, and Peter F. Stadler. **Efficient computation of RNA folding dynamics.** Journal of Physics A: Mathematical and General, 37:4731–4741, 2004.

KINETICS

Calculate transition rates from energy barriers $\Delta G^{\ddagger} = E(s_j) - E(s_i)$

$$k_{ij} = \begin{cases} k_0 & \text{if } \Delta G^{\ddagger} \leq 0\\ k_0 e^{-\frac{\Delta G^{\ddagger}}{RT}} & \text{otherwise} \end{cases}$$

... where k_0 is a constant to relate folding to wall-clock time

N. Metropolis, A.W. Rosenbluth, M.N. Rosenbluth, A.H. Teller, and E. Teller. **Equation of state** calculations by fast computing machines. The Journal of Chemical Physics, 21(6):1087–1092, 1953.

THE CHEMICAL MASTER EQUATION

$$\frac{dP_i(t)}{dt} = \sum_{i \neq j} (P_j(t)k_{ji} - P_i(t)k_{ij})$$

... together with the rates of gradient basin transitions ...

... can be solved for 60-80 nucleotides sequence length

are concentration dependent...

$$\frac{[AB]}{[A][B]} = K_{AB} = \frac{Z'_{AB}}{Z_A Z_B}$$

are concentration dependent...

$$\frac{[AB]}{[A][B]} = K_{AB} = \frac{Z'_{AB}}{Z_A Z_B}$$

DESIGN SEQUENCE PAIRS

DESIGN SEQUENCE PAIRS

DESIGN SEQUENCE PAIRS

THANKS TO

Coworkers: Ivo L. Hofacker, Christoph Flamm ViennaRNA package: Ronny Lorenz

Stefan Badelt, PhD Thesis, University of Vienna, (2016) "Control of RNA function by conformational design."

This research was funded in parts by the FWF International Programme I670, the DK RNA program FG748004 and the FWF project "SFB F43 RNA regulation of the transcriptome".

THE TBI

