ENUMERATION, CONDENSATION AND SIMULATION OF PSEUDOKNOT-FREE DOMAIN-LEVEL DNA STRAND DISPLACEMENT SYSTEMS

<u>Stefan Badelt</u>, Casey Grun, Karthik V. Sarma, Seung Woo Shin, Brian Wolfe, and Erik Winfree

DNA and Natural Algorithms (DNA) Group, Caltech

FNANO-19 Snowbird, April 16^{th} , 2019

http://www.github.com/DNA-and-Natural-Algorithms-Group/peppercornenumerator

1

DNA STRAND DISPLACEMENT

DOMAIN-LEVEL STRAND DISPLACEMENT

long (branch-migration) domain: binds irreversibly
 short (toehold) domain: binds reversibly

DOMAIN-LEVEL STRAND DISPLACEMENT

DOMAIN-LEVEL STRAND DISPLACEMENT

- long (branch-migration) domain: binds irreversibly short (toehold) domain: binds reversibly \leftarrow condensed network B Α **F1** F2 t b а Х t b а t Х t* **x*** **†*** **†*** **x*** <u>†</u>* 3-way branch migration unbind bind Х t b b а t а **†*** **x*** **†*** t* **x*** t* а t b i2 i1 **†*** **x*** t*

MANY EXPERIMENTAL DEMONSTRATIONS ...

Zhang et al. (2007)

Cherry & Qian (2018)

... MANY MORE POTENTIAL APPLICATIONS.

Soloveichik et al. (2010) - DNA as a universal substrate for chemical kinetics

DSD IS A KINETIC TOOLBOX

... but how do you model your DSD system?

- per hand
- VisualDSD ^{Phillips & Carelli (2009), ..., Sparcassi et al. (2018)}
- other models Kawamata et al. (2012), Mokhtar et al. (2017), ... ?

You specify the reaction types. You specify the reaction rates. You may include all(?) types of pseudoknotted conformations, and even non-DSD reactions (e.g. enzyme cleavage reactions).

... so you better know what you are doing.

THERMODYNAMIC ENERGY MODEL

A secondary structure is a list of base pairs, where:

- A base may participate in at most one base pair
- Base pairs must not cross (no pseudoknots)
- Only specific base-pairs (GC, AT, GT) are allowed.

b) "dot-bracket" or "dot-parens-plus" notation																								
abcb*	d e	f	g	h +	h*	f*	i	j	k	1	+	1*	m	j*	n	0	р	+	q	+	q*	0*	r	d*
. (.)	(.	(•	(+))	•	(•	(+)	•)	•	(•	+	(+))	•)
c) "kernel" notation																								

DSD IS A KINETIC TOOLBOX ...

... that can be rigorously analyzed

within the domain of the thermodynamic energy model.

The **Peppercorn** software package:

- reaction enumeration
- reaction condensation
- approximate DNA reaction rate model

REACTION TYPES & APPROXIMATE RATES 1/2

$$\begin{array}{ll} \text{bind11:} & \stackrel{r}{\xrightarrow{}} & \stackrel{r}{\xrightarrow{\phantom{$$

Open reactions only for toeholds with parameter: L, k_{slow} **bind21** is the only valid bimolecular reaction

REACTION TYPES & APPROXIMATE RATES 2/2

unimolecular, but may lead to dissociation

WHAT ARE THE CHALLENGES?

- polymerization
 => timescale separation
- size of the enumerated network
 => condensation

POLYMERIZATION

s1–s2

s1-s2-s1-s2

s1-s2-s1-s2-s1

s1-s2-s1-s2-s1-s2

. . .

MODEL PARAMETERS

	negligible reactions	slow reactions	fast reactions
bimolecular [/M/s]		bind21	
unimolecular [/s]	open (len > L)		open (len < L) bind11 branch migration

rate-independent model: simple, one parameter: L

MODEL PARAMETERS

_	negligible reactions	slow reactions	fast reactions
bimolecular [/M/s]		bind21	
unimolecular [/s]	open (len > L)		open (len < L) bind11 branch migration
unimolecular [/s]	$k_{uni} < k_{slow}$ k_s	$k_{slow} \le k_{uni} < k_{fast}$	$k_{uni} \ge k_{fast}$

rate-independent model: simple, one parameter: L

rate-dependent model: flexible, two parameters: k-slow, k-fast

CASE STUDIES: CONDENSED REACTION RATES

CASE STUDIES: AUTOCATALYTIC SYSTEM

CASE STUDIES: AUTOCATALYTIC SYSTEM

CASE STUDIES: AUTOCATALYTIC SYSTEM

CASE STUDIES: SEESAW SYSTEMS

Qian & Winfree (2011)

CASE STUDIES: SEESAW SYSTEMS

CASE STUDIES: MANY SYSTEMS

- Zhang et al. (2007) Fig. 1 Single-layer catalytic DSD system (varying catalyst)
- Zhang et al. (2007) Fig. 3 Two-layer feedforward DSD system (varying catalyst)
- Zhang et al. (2007) Fig. 4 Autocatalytic DSD system (varying autocatalyst)
- Yin et al. (2008) Fig. 3 Autocatalytic hairpin system (varying initiator)
- A Zhang & Winfree (2009) Fig. 5 Catalytic DSD system (varying toehold lengths)
- * Zhang & Winfree (2010) Fig. 3A Catalytic DSD system with 100 nM substrates (varying catalyst)
- Zhang & Winfree (2010) Fig. 3B Catalytic DSD system 30 nM substrates (varying catalyst)
- Zhang & Winfree (2010) Fig. 3C Catalytic DSD system with 3 nM substrates (varying catalyst)
- Zhang & Winfree (2010) Fig. 3D Catalytic DSD system with 1 nM substrates (varying catalyst)
- Zhang & Winfree (2010) Fig. 10C Catalytic DSD system with four-letter alphabet (varying catalyst)
- Zhang & Winfree (2010) Fig. 10F -- Catalytic DSD system with three and four-letter alphabet (varying catalyst)
- Zhang (2011) Fig. 3A (?) Cooperative strand displacement
- Kotani & Hughes (2017) Fig. 2 Single-layer catalytic DSD with 4-way branch migration (varying catalyst)
- Kotani & Hughes (2017) Fig. 3 Two-layer feedforward DSD system with 4-way branch migration (varying catalyst)
- Kotani & Hughes (2017) Fig. 4 Autocatalytic DSD system with 4-way branch migration (varying autocatalyst)

THANKS TO

Erik Winfree Casey Grun Karthik Sarma

http://www.github.com/DNA-and-Natural-Algorithms-Group/peppercornenumerator

... don't forget to ask me about kernel notation.

This research was funded in parts by:

The Caltech Biology and Biological Engineering Division Fellowship.

The U.S. National Science Foundation NSF Grant CCF-1213127 and NSF Grant CCF-1317694.

The Gordon and Betty Moore Foundation's Programmable Molecular Technology Initiative (PMTI).

CASE STUDIES: REACTION COMPLETION

CASE STUDIES: SEESAW SYSTEMS

Qian & Winfree (2011) - Supporting Online Material

Designed reactions	Seesawing reactions	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$
	Thresholding reactions	$w_{j,i} \qquad Th_{j,i:i} \qquad waste \qquad waste$ $\sum_{j=1}^{N} \sum_{i=1}^{N} \sum_{j=1}^{N} \sum_{j=1}^{N} \sum_{i=1}^{N} \sum_{j=1}^{N} \sum_{j=1}^{N} \sum_{i=1}^{N} \sum_{j=1}^{N} \sum_{j=1}^{N} \sum_{i=1}^{N} \sum_{i=1}^{N} \sum_{i=1}^{N} \sum_{i=1}^{N} \sum_{i=1}^{N} \sum_{i=1}^{N} \sum_{i=1}^{N} \sum$
	Reporting reactions	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
Side reactions		$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
	Universal toehold binding reactions	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
		$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
		$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
		$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
	Leak reactions	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$

Qian & Winfree (2011) - Supporting Online Material

REACTION RULES

x(u(y)) t* = <x!j u!k y u!k x!j t*\>

CRN CONDENSATION

REACTION ENUMERATION

- all initial complexes are included
- every complex has all valid fast reactions enumerated
- transient complexes have no slow reactions enumerated
- resting complexes have all valid slow reactions enumerated

valid according to enumeration semantics:

- rate-dependent model
- rate-independent model
- max-helix semantics: reaction types are greedy
- reject-remote semantics: exclude remote-toehold branch migration

SEPARATION OF TIMESCALES

unimolecular reactions are fast bimolecular reactions are slow

