A GENERAL-PURPOSE CRN-TO-DSD COMPILER FRAMEWORK WITH FORMAL VERIFICATION, OPTIMIZATION, AND SIMULATION CAPABILITIES

Stefan Badelt

DNA and Natural Algorithms (DNA) Group, Caltech

MPP2-Finale Workshop Caltech, June 27^{th} , 2019

http://www.github.com/DNA-and-Natural-Algorithms-Group peppercornenumerator, nuskell, KinDA

DNA STRAND DISPLACEMENT

MANY EXPERIMENTAL DEMONSTRATIONS ...

Zhang et al. (2007)

Cherry & Qian (2018)

0

1

T,

[XF₁₆] = 12.4 nM

X₁₆

0.02 0.04 0.06

0

T X₇₇

... MANY MORE POTENTIAL APPLICATIONS.

Soloveichik et al. (2010) - DNA as a universal substrate for chemical kinetics

fuel species (high concentration): {F1, F2}

FROM CRN TO DSD SYSTEMS

Chen et al. (2012), Cardelli (2013), Srinivas (2015), Lakin et al. (2016), ...

Images drawn using the DNA strand displacement analysis software VisualDSD: Philipps & Cardelli (2009), ..., Spaccasassi et al. (2017)

A CRN-TO-DSD COMPILER

THE CENTRAL COMPONENT: PEPPERCORN

Grun et al. (2014) - arXiv Badelt, Grun et al. (in perparation)

THERMODYNAMIC ENERGY MODEL

A secondary structure is a list of base pairs, where:

- A base may participate in at most one base pair
- Base pairs must not cross (no pseudoknots)
- Only specific base-pairs (GC, AT, GT) are allowed.

b) "dot-bracket" or "dot-parens-plus" notation

a b c b* d e f g h + h* f* i j k l + l* m j* n o p + q + q* o* r d*
(.) (.(.(+))).(.(+)).)

c) "kernel" notation

a b(c) d(e f(g h(+)) i j(k l(+) m) n o(p + q(+)) r)

REACTION TYPES & APPROXIMATE RATES 1/2

Open reactions only for toeholds with parameter: L, k_{slow}

bind21 is the only valid bimolecular reaction

REACTION TYPES & APPROXIMATE RATES 2/2

unimolecular, but may lead to dissociation

POLYMERIZATION

 \rightarrow

. . .

CONDENSED REACTION RATES

AUTOCATALYTIC SYSTEM

AUTOCATALYTIC SYSTEM

MANY SYSTEMS

- Zhang et al. (2007) Fig. 1 Single-layer catalytic DSD system (varying catalyst)
- Zhang et al. (2007) Fig. 3 Two-layer feedforward DSD system (varying catalyst)
- Zhang et al. (2007) Fig. 4 Autocatalytic DSD system (varying autocatalyst)
- Yin et al. (2008) Fig. 3 Autocatalytic hairpin system (varying initiator)
- Zhang & Winfree (2009) Fig. 5 Catalytic DSD system (varying toehold lengths)
- Zhang & Winfree (2010) Fig. 3A Catalytic DSD system with 100 nM substrates (varying catalyst) ٠
- Zhang & Winfree (2010) Fig. 3B Catalytic DSD system 30 nM substrates (varying catalyst)
- Zhang & Winfree (2010) Fig. 3C Catalytic DSD system with 3 nM substrates (varying catalyst)
- Zhang & Winfree (2010) Fig. 3D Catalytic DSD system with 1 nM substrates (varying catalyst)
- Zhang & Winfree (2010) Fig. 10C -- Catalytic DSD system with four-letter alphabet (varying catalyst)
- Zhang & Winfree (2010) Fig. 10F -- Catalytic DSD system with three and four-letter alphabet (varying catalyst)
- Zhang (2011) Fig. 3A (?) Cooperative strand displacement

- Kotani & Hughes (2017) Fig. 2 Single-layer catalytic DSD with 4-way branch migration (varying catalyst)
- Kotani & Hughes (2017) Fig. 3 Two-layer feedforward DSD system with 4-way branch migration (varying catalyst)
- Kotani & Hughes (2017) Fig. 4 Autocatalytic DSD system with 4-way branch migration (varying autocatalyst)

THE COMPILER FRAMEWORK

Peppercorn: Badelt, Grun et al. (in perparation)

KinDA: Berleant et al. (2018)

- NUPACK: Dirks et al. (2007)
- Multistrand: Schaeffer et al. (2015)

Nuskell: Badelt et al. (2017)

- CRN pathway decomposition equivalence: Shin et al. (2017)
- CRN bisimulation equivalence: Johnson et al. (2018)

THE COMPILER FRAMEWORK

Peppercorn: Badelt, Grun et al. (in perparation) **KinDA:** Berleant et al. (2018)

- NUPACK: Dirks et al. (2007)
- Multistrand: Schaeffer et al. (2015)

Nuskell: Badelt et al. (2017)

- CRN pathway decomposition equivalence: Shin et al. (2017)
- CRN bisimulation equivalence: Johnson et al. (2018)

THE COMPILER FRAMEWORK

Peppercorn: Badelt, Grun et al. (in perparation) **KinDA:** Berleant et al. (2018)

- NUPACK: Dirks et al. (2007)
- Multistrand: Schaeffer et al. (2015)
- Nuskell: Badelt et al. (2017)
 - CRN pathway decomposition equivalence: Shin et al. (2017)
 - CRN bisimulation equivalence: Johnson et al. (2018)

DETAILED VS. CONDENSED ENUMERATION

$C + A \rightarrow A + A$ detailed • condensed

q

OSCILLATOR ANALYSIS 1/2

Translation scheme	pathway decompositon	CRN bisimulation
soloveichik2010.ts	True	True
cardelli2011_FJ.ts	False	False
cardelli2011_FJ_noGC.ts	False	True
cardelli2011_NM.ts	timeout	False
cardelli2011_NM_noGC.ts	False	True
qian2011_3D_var1.ts	True	True
lakin2012_3D.ts	False	False
lakin2012_3D_var1.ts	False	True
cardelli2013_2D_3I.ts	False	True
cardelli2013_2D_3I_noGC.ts	timeout	True
chen2013_2D_JF_var1.ts	timeout	True
lakin2016_2D_3I.ts	timeout	False
srinivas2015.ts	True	True

CRN bisimulation equivalence: Johnson et al. (2016) CRN pathway decomposition equivalence: Shin et al. (2014)

OSCILLATOR ANALYSIS 2/2

formal input CRN

3 species 7 reactions A -> A + A A + A -> A A + B -> B + B B -> A + C -> C -> C + C C + C -> C

enumerated CRN 360 species

668 reactions

Johnson et al. (2018) - CRN bisimulation equivalence translation scheme: qian2011_3D_var1.ts

formal input CRN

3 species 7 reactions -> A + A Α A + A -> AA + B -> B + BR -> A + C -> С -> C + C $C + C \rightarrow C$

condensed CRN

enumerated CRN 360 species

668 reactions

```
42 species
    32 reactions
f14 + C -> e1428 + f15
e853 + f12 -> C + f13
A + f4 -> f3 + e71
f2 + e25 -> A + f1
A + e^{25} - f^{2} + e^{7}
e996 + f3 -> A + f10
e1428 + f15 -> f14 + C
f3 + e71 -> A + f4
e465 + B -> e418 + f6
e614 + f9 -> e611 + e730
e996 + C -> e1040 + f12
e465 + f5 -> e514 + e368
e308 + f7 -> f8 + B
e418 + B -> e371 + f6
C + f13 -> e853 + f12
A + f1 -> f2 + e25
B + e71 -> e319 + f7
f2 + e7 -> A + e25
e1040 + f11 -> e1162 + e1163 + e1158
e319 + f7 -> B + e71
e308 + f9 -> e614 + e615 + e611
e371 + f6 -> e418 + B
e1040 + f12 -> e996 + C
f8 + B -> e308 + f7
e319 + f5 -> e372 + e371 + e368
f3 + e7 -> A + f0
e853 + f15 -> e1428 + C
e1428 + C -> e853 + f15
A + f10 -> e996 + f3
e1163 + f11 -> e1158 + e1246
e418 + f6 -> e465 + B
A + f0 -> f3 + e7
```

Johnson et al. (2018) - CRN bisimulation equivalence translation scheme: gian2011_3D_var1.ts

formal input CRN

3 species 7 reactions A -> A + A A + A -> A A + B -> B + B B -> A + C -> C -> C + C C + C -> C

verification CRN 26 species (no fuel species) 32 reactions C -> e1428 e853 -> C A -> e71 e25 -> A $A + e^{25} -> e^{7}$ e996 -> A e1428 -> C e71 -> A e465 + B -> e418 e614 -> e611 + e730 e996 + C -> e1040 e465 -> e514 + e368 e308 -> B e418 + B -> e371 C -> e853 A -> e25 B + e71 -> e319 e7 -> A + e25 e1040 -> e1162 + e1163 + e1158 e319 -> B + e71 e308 -> e614 + e615 + e611 e371 -> e418 + B e1040 -> e996 + C B -> e308 e319 -> e372 + e371 + e368 e7 -> A e853 -> e1428 + C e1428 + C -> e853 A -> e996 e1163 -> e1158 + e1246 e418 -> e465 + B A -> e7

condensed CRN

A + f0 -> f3 + e7

42 species 360 species 668 reactions 32 reactions $f14 + C \rightarrow e1428 + f15$ e853 + f12 -> C + f13 A + f4 -> f3 + e71f2 + e25 -> A + f1 $A + e^{25} - f^{2} + e^{7}$ e996 + f3 -> A + f10 e1428 + f15 -> f14 + C f3 + e71 -> A + f4 e465 + B -> e418 + f6 e614 + f9 -> e611 + e730 e996 + C -> e1040 + f12 e465 + f5 -> e514 + e368 e308 + f7 -> f8 + B e418 + B -> e371 + f6 C + f13 -> e853 + f12 A + f1 -> f2 + e25 B + e71 -> e319 + f7 f2 + e7 -> A + e25 e1040 + f11 -> e1162 + e1163 + e1158 e319 + f7 -> B + e71 e308 + f9 -> e614 + e615 + e611 e371 + f6 -> e418 + B e1040 + f12 -> e996 + C f8 + B -> e308 + f7 e319 + f5 -> e372 + e371 + e368 f3 + e7 -> A + f0 e853 + f15 -> e1428 + C e1428 + C -> e853 + f15 A + f10 -> e996 + f3 e1163 + f11 -> e1158 + e1246 e418 + f6 -> e465 + B

enumerated CRN

31

Johnson et al. (2018) - CRN bisimulation equivalence translation scheme: qian2011_3D_var1.ts

formal input CRN	interpreted CRN	verification CRN	condensed CRN	enumerated CRN
3 species	3 species	26 species (no ruei species)	42 species	360 species
7 reactions	7 non-trivial reactions	32 reactions	32 reactions	668 reactions
A -> A + A	C -> C	C -> e1428	f14 + C -> e1428 + f15	
A + A -> A	C + C -> C	e853 -> C	e853 + f12 -> C + f13	
A + B -> B + B	A -> A	A -> e71	A + f4 -> f3 + e71	
B ->	A -> A	e25 -> A	f2 + e25 -> A + f1	
A + C ->	A + A -> A + A	A + e25 -> e7	A + e25 -> f2 + e7	
C -> C + C	A -> A	e996 -> A	e996 + f3 -> A + f10	
C + C -> C	C -> C	e1428 -> C	e1428 + f15 -> f14 + C	
	A -> A	e71 -> A	f3 + e71 -> A + f4	
$\Delta \implies \Delta$	B -> B	e465 + B -> e418	e465 + B -> e418 + f6	
B => B	->	e614 -> e611 + e730	e614 + f9 -> e611 + e730	
C => C	A + C -> A + C	e996 + C -> e1040	e996 + C -> e1040 + f12	
e1040 => A, C	->	e465 -> e514 + e368	e465 + f5 -> e514 + e368	
e1158 =>	B -> B	e308 -> B	e308 + f7 -> f8 + B	
e1162 =>	B + B -> B + B	e418 + B -> e371	e418 + B -> e371 + f6	
c e1163 =>	C -> C + C	C -> e853	C + f13 -> e853 + f12	
O e1246 =>	A -> A	A -> e25	A + f1 -> f2 + e25	
e1428 => C	B + A -> A + B	B + e71 -> e319	B + e71 -> e319 + f7	
$=$ $e^{25} = A$	A + A -> A + A	e7 -> A + e25	f2 + e7 -> A + e25	
$e_{308} => B$	A + C ->	e1040 -> e1162 + e1163 + e1158	e1040 + f11 -> e1162 + e11	63 + e1158
S e368 =>	A + B -> B + A	e319 -> B + e71	e319 + f7 -> B + e71	
$\mathbf{Q}_{e371} => B_{e371}$	В ->	e308 -> e614 + e615 + e611	e308 + f9 -> e614 + e615 +	e611
Z e372 =>	B + B -> B + B	e371 -> e418 + B	e371 + f6 -> e418 + B	
e 418 => B	A + C -> A + C	e1040 -> e996 + C	e1040 + f12 -> e996 + C	
O e465 =>	B -> B	B -> e308	f8 + B -> e308 + f7	
c e514 =>	A + B -> B + B	e319 -> e372 + e371 + e368	e319 + f5 -> e372 + e371 +	e368
O e611 =>	A + A -> A	e7 -> A	$f_3 + e_7 -> A + f_0$	
• e614 =>	C + C -> C + C	e853 -> e1428 + C	e853 + f15 -> e1428 + C	
e 615 =>	C + C -> C + C	e1428 + C -> e853	e1428 + C -> e853 + f15	
e/ => A, A	A -> A	A -> e996	A + f10 -> e996 + f3	
2 = e/1 => A	->	e1163 -> e1158 + e1246	e1163 + f11 -> e1158 + e12	46
	B -> B	e418 -> e465 + B	e418 + f6 -> e465 + B	
E e996 => A	A -> A + A	A -> e7	A + f0 -> f3 + e7	

Johnson et al. (2018) - CRN bisimulation equivalence translation scheme: qian2011_3D_var1.ts

FROM A DIGITAL CIRCUIT TO DSD

Input for the nuskell compiler: **32** formal reactions.

soloveichik2010.ts: 52 signal species, 92 fuel species, 172 intermediate species, 180 reactions.

verifies as correct according to the pathway decomposition and CRN bisimulation equivalence

Badelt, Shin, Johnson, Dong, Thachuk and Winfree: A general-purpose CRN-to-DSD compiler with formal verification, optimization, and simulation capabilities. LNCS (2017)

CONCLUSION

STRAND DISPLACEMENT IS A KINETIC TOOLBOX ...

... that can be rigorously analyzed

within the domain of the thermodynamic energy model.

formal verification, choose optimal translation scheme, simulation using approximate reaction rates

THANKS TO

The U.S. National Science Foundation NSF Grant CCF-1213127 and NSF Grant CCF-1317694. The Gordon and Betty Moore Foundation's Programmable Molecular Technology Initiative (PMTI).

CASE STUDIES: AUTOCATALYTIC SYSTEM

CASE STUDIES: AUTOCATALYTIC SYSTEM

CASE STUDIES: AUTOCATALYTIC SYSTEM

