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Multi-target design of RNA sequences

For example: design nbosmtches for translational control
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Multi-target design of RNA sequences

For example: design riboswitches for translational control
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Task: generate seq's with specific properties Approach:
® low/specific energy for multiple structures defined Sampling

® specific GC content
® specific energy differences

® specific sequence/structure motifs
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Uniform sampling for multiple structures
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Uniform sampling for multiple structures
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® For uniform: choose first position
A:C:G:U=4:4:10:10
Then, e.g. after G, choose second
A:G=4:6,...

® — counting

Sampling for multi-target RNA design - S. Will



S1
52
S3

Uniform sampling for multiple structures

2

~

o> > ~-
OO0 OO>>>P>POOD D ~~ -

3

oOoOO>»r>»00>>0>0 > -

ccnNnnNnEeCcccCcCcccCcCc vYwyvw +»

cncnEcnEcnEnNnCccCccc vwv-~-

. A G
e Complementarity I/I

U

® For uniform: choose first position
A:C:G:U=4:4:10:10
Then, e.g. after G, choose second
A:G=4:6, ...

® — counting

® Theorem: Counting of sequences for
multiple targets is #P-hard.
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Counting is #P-hard

Proof (sketch):
® Counting bipartite independent sets is #P-hard.

® Sequence counting is equivalent to counting independent sets.
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Counting is #P-hard

Proof (sketch):
® Counting bipartite independent sets is #P-hard.

® Sequence counting is equivalent to counting independent sets.

A G ney O G ® 6

/1 /NA N
Y cuv OO 0 ® O

Sampling for multi-target RNA design - S. Will



Counting is #P-hard

Proof (sketch):
® Counting bipartite independent sets is #P-hard.

® Sequence counting is equivalent to counting independent sets.
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Systematic counting and sampling

Recipe: %)
1. Decompose dependency graph

2. Apply dynamic programming T

3. Sample |
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target structures dependency graph

tree decomposition
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Systematic counting and sampling

Recipe:
1. Decompose dependency graph
2. Apply dynamic programming T
3. Sample |
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Theorem: Counting and sampling is efficient for fixed tree width

O(nk4&™ +tnk)
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Systematic counting and sampling

Recipe:
1. Decompose dependency graph
2. Apply dynamic programming T
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Theorem: Counting and sampling is efficient for fixed tree width

O(nk&" +tnk) — O(nk2¥"Tc + tnk)
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From uniform to Boltzmann sampling

uniform sampling «— counts
Boltzmann sampling «— partition functions

Boltzmann sampling: P(S) o exp(—SE(S)).
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From uniform to Boltzmann sampling

uniform sampling «— counts
Boltzmann sampling «— partition functions

Boltzmann sampling: P(S) o exp(—SE(S)).
Energy E(S): =) weighted energies of single structures

® energy models

® Base pair model
“like counting” (G0 f)a:s:e pa)lr)moge)l

® Nearest neighbor model (Turner)
requires multi-ary dependencies:
constraint framework*

nearest neighbor model

® Stacking model o @eC-- - mm - - @

“in-between”, scores stacks

stacking model

*Constraint networks / cluster tree elimination [Rina Dechter]

ing for multi-target RNA design - S. Will
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Targeting specific properties:
multi-dimensional Boltzmann sampling
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Weight and combine single structure energies and features

Learn weights (adaptively) — target specific energies and GC content
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Boltzmann vs. uniform sampling
for multi-target RNA design

Dataset RedPrint Uniform Improvement
Seeds 2str 21.67 (+4.38) 37.74 (£6.45) 73%

3str 18.09 (+3.98) 30.49 (+5.41) 71%

4str 19.94 (+3.84) 32.29 (+5.24) 63%
Optimized 2str 5.84 (£1.31) 7.95 (+1.76) 28%

3str 5.08 (£1.10)  7.04 (+1.52) 31%

4str 8.77(+1.48) 13.13 (+2.13) 37%

Multi-target design objectivelB/“eP""t] on the Modena benchmark

@ https://github.com/yannponty/RNARedPrint

[Modena] Taneda. BMC Bioinformatics, 2015.
[Blueprint] Hammer et al. Bioinformatics, 2017.
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Summary

FPT Boltzmann sampling for multi-target RNA design
(counting is #P-hard)

Targets specific properties

Versatile framework w/ multi-ary constraints

Supports complex RNA design scenarios and various RNA energy
models (NN, PKs)

Perspectives: towards FPT negative design; Riboswitch design
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iii) Dependency Graph

Vi) Final Designs

(workflow for the base pair energy model; our approach supports complex models and scenarios by n-ary constraints)
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