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Positive and negative RNA design

® Positive structural design

Design sequences S with high affinity to the given structure(s) R.

Optimize energy Z E(R|S) (or target specific energies)
RER
= IN-design

® Negative structural design
Moreover, avoid high(er) affinity for all other structures.

Optimize probability H Pr(R|S)
ReER
= OUT-design
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Multi-target design of RNA sequences

Bio- example design riboswitches for translational control
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Multi-target design of RNA sequences

Bio- example design riboswitches for translational control

Multiple structures (=multiple design targets)
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Multi-target design of RNA sequences

Bio- example design riboswitches for translational control
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Task: generate seq's with specific properties Approach:
® Low/specific energy for multiple structures controlled sampling

® Forbid motifs to appear anywhere in design; Force,
each at least once

® Control overall composition (GC-content)
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RNA sequence/structure compatibility

) A G
Complementarity of bases: |/|
U

Given multiple secondary structures R = {Ry, ..., R¢} of length n,

a sequence S € {A,C, G, U} is compatible with (R, n) iff

V(i,j) € R€ R :(S5;,S;) is complementary

Problems given (R, n):

® Decision: is there any compatible S

Find/Construct a compatible S

Count the compatible S

Generate S uniformly (among all compatible ones)
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Multi-target compatible designs

Given ({R1,..., Rk}, n)

® Decision
Theorem (Flamm et al., 2001)
O(n) algorithm: return bipartite(G)
¢ Construct one
Theorem (Flamm et al., 2001)
©(n) algorithm: alternate G and C along cycles and paths
e Counting
Theorem (Hammer/Wei/Ponty/Will, 2018)
= Corollary: Counting designs is # P-hard
¢ Controlled (uniform, Boltzmann) sampling
FPT algorithm on treewidth (Hammer/Wei/Ponty/Will, 2018)
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Uniform sampling for multiple structures
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A A A U U °® Uneven distribution: e.g.
A A G U U ® first position A:C:G:U=4:4:10:10
A G A U U ® second position, after selecting G,
A G G U U A:G=4:6,...
G A AU Co, — counting enables unif li
G A A U U g uniform sampling
G A G U C
G A G U U
G G A U C
G G A U U
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Counting is #P-hard

Theorem [HWPW, 2018]: Counting of sequences for multiple
targets is #P-hard.

Proof (sketch):

e #BIS (Counting bipartite independent sets) is #P-hard
[Ge, Stefankovig, 2012].

® Sequence counting is equivalent to counting independent sets.
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Counting is #P-hard

Theorem [HWPW, 2018]: Counting of sequences for multiple
targets is #P-hard.

Proof (sketch):

e #BIS (Counting bipartite independent sets) is #P-hard
[Ge, Stefankovig, 2012].

® Sequence counting is equivalent to counting independent sets.
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Systematic counting and sampling

Given: k structures, length n
Recipe:

1. Decompose dependency graph
2. Apply dynamic programming (CTE?!) 1

3. Sample (stochastic backtracking) | e G
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target structures dependency graph

tree decomposition

CTE = Cluster Tree Elimination (Rina Dechter)
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Systematic counting and sampling

Given: k structures, length n
Recipe:

1. Decompose dependency graph
2. Apply dynamic programming (CTE?!) 1
3. Sample (stochastic backtracking) |
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target structures

tree decomposition
Theorem: Counting and sampling is efficient for fixed tree width
O(nkd&™ +tnk)

1C'I'E = Cluster Tree Elimination (Rina Dechter)
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Systematic counting and sampling

Given: k structures, length n
Recipe:

1. Decompose dependency graph
2. Apply dynamic programming (CTE?!) 1
3. Sample (stochastic backtracking) |

1234567

CC. .
cCC)ydd
Cc C.))

target structures

tree decomposition
Theorem: Counting and sampling is efficient for fixed tree width
O(nk4" + t nk) — can be improved

1C'I'E = Cluster Tree Elimination (Rina Dechter)
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From uniform to Boltzmann sampling

uniform sampling <— counts
Boltzmann sampling <— partition functions

Boltzmann sampling: P(S) HT(—FZ

Features Fy can express energies as sums over feature contributions
= complex constraints F/(S) = f/
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From uniform to Boltzmann sampling

uniform sampling <— counts
Boltzmann sampling «— partition functions

Boltzmann sampling: P(S) HTF_FZ

Features Fy can express energies as sums over feature contributions
= complex constraints F/(S) = f/

Energy models

® Base pair model (CCCCaea)))ee((oee))e))
- o base pair model
like counting” energy = sum of

contributions per base pair T

i tacking model
e Stacking model stacking mode!
scores stacks (of two consec. bps)

multi-ary feature contributions

® and beyond: full model, p-knots. ..
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Dependency graphs
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Treewidth
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Multi-target design to

three RNA structures

Frequency

0 50 100 150 200 O 50 100 150 200 O 50 100 150 200
[ [ — [

30 20 -10 0 10

Energy [kcal /mol]
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Multi-target design to three RNA structures

Frequency

0 50 100 150 200 0 50 100 150 200 O 50 100 150 200
[ [ — [
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Boltzmann sample: 1000 low energy sequences; generated in seconds
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The positive RNA design problem

Problem
IN: structures R, length n, d features F1,--- , Fy4

and objective values f, - -

OUT: t uniform random sequences S, compatible w/ R, s.t.

V1<e<d:Fy(S)=f
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The positive RNA design problem

Problem
IN: structures R, length n, d features F1,--- , Fy4

and objective values fi*,--- , f}

OUT: t uniform random sequences S, compatible w/ R, s.t.

V1<e<d:Fy(S)=f

Method (Multi-dim. Boltzmann sampling)

® Choose initial weights 7y, ... 7q

Sample from Boltzmann-distribution, s.t. Pr(S) <[], TrZF“(S)

Output samples that meet objective values

Estimate feature means and adapt weights; iterate
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Why multi-dim. Boltzmann sampling?

Problem
IN: structures R, length n, d features F1,--- , Fy;

objective values fi*,--- , f}; and tolerance ¢ > 0
OUT: ¢t random sequences S, compatible w/ R, s.t.

VI<L<d:F(S)elff - (1—e).ff (1+¢)

Possible approaches:

¢ Multi-dim. Boltzmann sampling (+ rejection step)

¢ Classified Dynamic Programming
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Why multi-dim. Boltzmann sampling?

Problem
IN: structures R, length n, d features F1,--- , Fy;

objective values fi*,--- , f}; and tolerance ¢ > 0
OUT: ¢t random sequences S, compatible w/ R, s.t.

VI<L<d:F(S)elff - (1—e).ff (1+¢)

Possible approaches:

¢ Multi-dim. Boltzmann sampling (+ rejection step)
works well b/c distributions are typically concentrated
® expect O(1) rejections for € > 1/4/n,
® O(n4/?) fore =0 [Bender et al., 1983; Drmota, 1997].

¢ Classified Dynamic Programming
® convolution: x©(n??) time / ©(n) space  [Cupal et al., 1996]
® using DFT to avoid convolution allows more efficient uniform
sampling over range (case € > 0) [cf. Senter et al., 2012]
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Multi-target design to three RNA structures
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Boltzmann outperforms uniform sampling
for negative multi-target RNA design

Dataset RedPrint Uniform Improvement
Seeds 2str 21.67 (+4.38) 37.74 (£6.45) 73%

3str 18.09 (+3.98) 30.49 (+5.41) 71%

4str 19.94 (+3.84) 32.29 (+5.24) 63%
Optimized 2str 5.84 (£1.31) 7.95 (+1.76) 28%

3str 5.08 (£1.10)  7.04 (+1.52) 31%

4str 8.77(+1.48) 13.13 (+2.13) 37%

Multi-target design objectivelB/“eP""t] on the Modena benchmark

@ https://github.com/yannponty/RNARedPrint

[Modena] Taneda. BMC Bioinformatics, 2015.
[Blueprint] Hammer et al. Bioinformatics, 2017.
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Complex sequence constraints

Task: forbid a set W of subwords of length < k

Naive: add k-ary constraints for each k successive sequence positions
Proposed:

e construct Aho-Corasick automaton (states Q)

® extend alphabet from X to Q@ x X

® restrict consecutive positions to transitions of the automaton
(adds Hamiltonian path of binary constraints)

e new complexity O(n- [R|- (|X|-|Q))" *1); new tree width w’ (1)
Similarly: enforce subwords

transfers ideas of [Zhou et al, 2013]
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@ https://github.com/s-will/Infrared

e Satisfies multiple constraints and targets multiple complex
properties; Improves quality and feasibility of RNA design
complex constraints by multi-dimensional Boltzmann sampling
® Based on Constraint Networks and Tree Decomposition/CTE:
Generic system to extend RNA design ...
...and develop novel sampling-based tools

® Theorems: counting is #P-hard; Boltzmann-sampling is FPT
® Perspectives and Open Questions:
® effect on tree-width of complex constraints like forbidding motifs?
(e.g. this adds hamiltonian path of dependencies)
® how to (better) ensure uniformity within range of feature values?
® complexity of generation, stronger complexity bounds?
® how to extend towards FPT negative design?

3
read more: 'abstract’, https://arxiv.org/abs/1804.00841
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