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Biological Networks
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Yeast Protein Interaction Network

The vertex color reflects the phenotypic effect of a gene deletion mutant (green
nonlethal, red lethal, orange slow growth, yellow unknown).

Figure adapted from Jeong, H et al. (2001), Lethality and centrality in protein networks, Nature 411:41-42 |
doi:10.1038/35075138 2 / 28

Yeast Metabolic Network

Reconstruction of the S. cervisiae metabolic network consisting of
810 metabolites (vertices) and 843 reactions (3419 edges).
Yeast Consensus Reconstruction (Yeast 5): 1418 metabolites, 2110
reactions with 918 verified S. cerevisiae genes.
Figure adapted from Förster J et al. (2003), Genome-Scale Reconstruction of the Saccharomyces cerevisiae Metabolic
Network, Genome Res 13:244-253 | doi:10.1101/gr.234503
Benjamin D Heavner BD et al (2012), Yeast 5 – an expanded reconstruction of the Saccharomyces cerevisiae
metabolic network, BMC Sys Biol 6:55 | doi:10.1186/1752-0509-6-55 3 / 28



Map of the Internet
Analytic approaches are needed to “look” at complex networks!

Map of Internet December 1998: colored by IP addresses By William R. Cheswick
http://www.cheswick.com/ches/map/
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Language of Complex Networks

Complex dynamical systems are characterized by a large number of
non-linearly interacting elements, giving rise to emergent properties
(complication|complexity).

Translation of biological phenomena and processes into networks:

1 makes problems mathematically tractable
(e.g. transcriptional regulation, metabolism, protein configurations)

2 uncovers
• functional organization (network topology)
• underlying design principles
• unknown organizational principles

3 reveals crucial system properties
• robustness, resilience
• redundancy, modularity
• functional dependencies among network elements
• systems dynamics
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Primer: Graphs

G = (V ,E ) where ei = (vi , vj)

• A graph is a tupel of two sets, the vertex set and the edge set.

• The edge set members are tupels of vertex set members.

• Graphs preserve neighborhood relations.
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vertex set V = {1, 2, 3, 4, 5, 6, 7}
edge set E = {(1, 2), (2, 3), (1, 3), (3, 6), (4, 5), (5, 7)}
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Primer: Graph Representations
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A =




0 1 1 0
0 0 1 0
0 0 0 0
0 0 1 1




adjacency matrix

While the adjacency list is very
memory efficient, it is in general
quicker to use the |V | × |V |
adjacency matrix to determine if
an edge (u, v) is present/absent
in the graph.
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Network Measure: Degree distribution
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p(k) =
|{v |d(v) = k}|

N

The degree distribution p(k) measures the probability that a
randomly chosen node in the network has degree k , d(v) is the
degree of node v, N is the total number of nodes in the graph.
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Classifying Networks into Categories
In graphs without self-loops, the degree equals the number of
neighbors of a vertex.

regular random scale-free

p(k) = k−γ , γ ∈ R+

[Note: log{p(k)} = log{k−γ} = −γ · log{k}].
9 / 28



Power Laws are self-similar

f (x) = K · xα

Scale-free denotes the lack of a meaningful average as power laws
are self-similar. Overall system properties are similar at all levels of
organization.

x �→ c · x , f (x) �→ f (c · x) = K · cα · xα = cαf (x) ∝ f (x)

A scale transformation leaves the form of the function invariant, it
results in a proportional scaling of the function itself. Power laws
are the only solution to this functional equation.
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Network Measure: Clustering coefficient
Measures the probability that two vertices with a common
neighbor are connected.

?

Ci =
2 · Ei

ki (ki − 1)

Ei is the number of all observed edges between ki neighbors of
vertex ni . Ci quantifies the local order (local structure) in the
network.
[Note: The maximum number of possible edges between ki neighbors of vertex ni is Emax = ki (ki − 1)/2].
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Discriminating between different Networks

Barabási AL and Oltvai ZN (2004), Network biology: understanding the cell’s functional organization, Nature Rev
Gen 5:101-113 | doi:10.1038/nrg1272 12 / 28

Network Prototype Models

Purpose of prototype models to provide

• insight how observed features arise from construction rules.
network measures → prototype models → global features

• null models (statistic significance of observed features).

The most common prototype models are:

1 Erdös-Rényi (ER) Model

2 Watts-Strogatz (WS) Model

3 Barabási-Alberts (BA) Model

These are all random networks with particular features...

Albert R & Barabási A-L (2002), Statistical mechanics of complex networks, Rev Mod Phys 74:47–97 |
doi:10.1103/RevModPhys.74.47

13 / 28



Primer: Statistical distributions
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The Erdös-Rényi Model

Consists of NV vertices connected by NE undirected edges which
are chosen randomly from the set of NV · (NV − 1)/2 possible
edges.

The probability p that two randomly chosen vertices are connected
is thus

p =
2 · NE

NV · (NV − 1)

The degree distribution is given by a binomial distribution that
becomes approximately Poissonian for large networks (NV → ∞).

The ER model exhibits the small-world property, i.e. over the percolation
threshold the average path length l between nodes scales as l ∼ logNV .
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Phase Transition in the Erdös-Rényi Model

For small p the network is disconnected. At p ∼ 1/NV (i.e.
〈k〉 ≈ 1) a phase transition to a giant component occurs. For
p ≥ log(NV )/NV all vertices are connected.
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The Watts-Strogatz Model
While the ER model correctly reproduces the small world property, it fails
to account for local clustering.

Increasing path length

Decreasing clustering

• Start with regular lattice-like network with local clusters.
• Introduce shortcuts with probability pnew .
• For increasing pnew the WS model approaches the ER model

(for pnew → 1 the ER model is recovered).

A very small number of shortcuts pnew � 1 is sufficient to rapidly decrease
the avarage path length and maintain local clustering.
Watts DJ & Strogatz SH (1998), Collective dynamics of ’small-world’ networks, Nature 393:440-442 |
doi:10.1038/30918
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The Barabási-Albert Model
ER and WS model do not capture the inhomogeneous degree distributions
found in empirical networks.

The BA model is based on two essential ingredients:

• Growth process (new vertex is added each time step).

• Preferential attachment:

The probability that a vertex ni receives a new edge is proportional
to its degree ki

p(ni) =
ki∑
j kj

For t � 1 the degree distribution follows a power law p(k) ∼ k−γ .

Barabási A-L & Albert R (1999), Emergence of Scaling in Random Networks, Science 286(5439):509-512 |
doi:10.1126/science.286.5439.509
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Tolerance against Node Removal

The topology of scale-free networks is dominated by a few highly
connected hubs.
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Removal of nodes

Therefore scale-free networks are robust against failures of
arbitrary nodes but quite vulnerable if hubs are attacked.

Note that a comprehensive view of robustness must as well take
dynamic aspects into account!

Barabási A-L (2012), Network science: Luck or reason, Nature 489:507-508 | doi:10.1038/nature11486
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The Interactom: Who interacts with whom?

Provide a comprehensive list of protein-protein interactions.

Experimental approaches:

• chemical crosslinking / footprinting

• protein arrays

• flourescence resonance energy transfer (FRET)

• flourescence cross-correlation spectroscopy

• yeast two-hybrid system

• affinity purification

Computational approaches/predictions:

• Genomic context

• Co-evolutionary

Sardiu ME and Washburn MP (2011), Building Protein-Protein Interaction Networks with Proteomics and Informatics
Tools, J Biol Chem 286:23645-23651 | doi:10.1074/jbc.R110.174052
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Identification of protein DNA interactions (GRNs)

The ChIP-on-chip technique combines chromatin immunoprecipitation
(”ChIP”) with DNA microarray technology (”chip”).

ChIP-on-chip allows to study binding sites of DNA-binding proteins on a
genome-scale basis. Other methods: DNAse-seq, ATAK-seq distinguishes
binding sites and open chromatin regions
Figure from wikipedia.org 21 / 28



Weaknesses of Interactom Screens

1 A poor overlap was observed between screens run by different
groups on the same organism.

2 High numbers of false positives (30-60%) and false negatives
(40-80%) in the screens.

3 All biophysically possible interactions are discovered not
necessarily only those occuring in biology (Q: What
constitutes a false positive?).

4 Many already known interactions are missed. (This is due to
under representation, mainly owed to the biological properties
of proteins, e.g. aggregation upon overexpression).

5 Transient interactions or interactions depending on
post-trancriptional modification events (e.g. phosphorylation,
ubiquitination) are not captured by the current methods.

Russell RB and Aloy P (2008), Targeting and tinkering with interaction networks, Nature Chem Biol 4(11):666-673
| doi:10.1038/nchembio.119
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Motif Detection and Network Dynamics

1 Represent the network of interest as a directed graph.

2 Determine the frequency of particular subgraphs.

3 Compare againset ensemble of randomized networks.

real network

Motif

randomized networks

Shen-Orr SS et al (2002), Network motifs in the transcriptional regulation network of Escherichia coli, Nature Genetics
31:64-68 | doi:10.1038/ng881
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Transcription regulation motifs in E. coli

Motif Freqreal Freqrand P-value

coherent FFL 34 4.40 ± 3 P < 0.001
incoherent FFL 6 2.50 ± 2 P ∼ 0.03
SIM 68 28.00 ± 2 P < 0.01
DORs 203 57.00 ± 14 P < 0.01
cycles 0 0.18 ± 0.6 P ∼ 0.8
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Shen-Orr SS et al (2002), Network motifs in the transcriptional regulation network of Escherichia coli, Nature Genetics
31:64-68 | doi:10.1038/ng881
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SIMs generate a temporal program of expression

1 Frequent in metabolic pathways regulation (e.g. arginine system).

2 Temporal order of genes matches their functional order.

3 Economic design! Proteins are not produced before they are needed.

Zaslaver A et al (2004), Just-in-time transcription program in metabolic pathways, Nature Genetics 36:486-491 |
doi:10.1038/ng1348
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Relative abundance of FFL types

Mangan S et al (2006), The incoherent feed-forward loop accelerates the response-time of the gal system of Es-
cherichia coli, J Mol Biol 356:1073-1081 | doi:10.1016/j.j mb.2005.12.003
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Dynamics of the coherent feed-forward-loop motif

The motif function: filter out brief spurious pulses of signal

• Sign-sensitive delay function (signal on/off ⇒ delay/no delay).

• Responds only to persistent signals

Alon, U (2007), Network motifs: theory and experimental approaches, Nature Rev Genetics 8:450-461 |
doi:10.1038/nrg2102
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