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Reconstruction of Metabolic Networks
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Figure from Lee KY et al (2010), The genome-scale metabolic network analysis of Zymomonas mobilis ZM4 explains
physiological features and suggests ethanol and succinic acid production strategies, Microbial Cell Factories 9:94 |

doi:10.1186/1475-2859-9-94
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Phylogenetic tree of metabolic reconstractions
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Our metabolic knowledge is srongly biased towards cultivatable bacteria.
Figure from Oberhardt MA et al (2009), Applications of genome-scale metabolic reconstructions, Mol Syst Biol
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What to do next?

— Network Structure Analysis

reactions

S —1— 0=S5-v Flux Analysis

species

stochiometric matrix

— X =5S5.v ODEs

Analysis of the metabolic network depends on:
@ amount and quality of the available information.

@® desired description level of the system.
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Steps to set up a Flux Balance Analysis (FBA)
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Figure adapted from Orth JD, Thiele | & Palsson B@ (2010), What is flux balance analysis?, Nature Biotech
28(3):245-248 | doi:10.1038/nbt.1614
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Information gained from Flux Analysis
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The goal is the quantitative description of cellular fluxes in relation
to environmental conditions.

Figure adapted from Marx A (1997), Bestimmung des Kohlenstoffflusses im Zentralstoffwechsel von Corynebacterium
glutamicum mittels 13C-|sotopenanalyse, PhD-thesis Uni Diisseldorf.
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Objective functions for Flux Balance Analysis

Formulate as an linear programing problem with additional
constraints (capacity of enzymes, external fluxes, ...) and an
appropriate optimization function.

Obj Function Explanation

max YBiomass biomass yield (same as groth rate)
VGlucose
max —YATP_ ATP yield
VGlucose
min 2 MNADH  pedox potential
VGlucose
min > ¢; reaction steps
max % biomass yield per flux unit
i

Schuetz R et al (2007), Systematic evaluation of objective functions for predicting intracellular fluxes in E. coli, Mol
Sys Biol 3:119 | doi:10.1038/msb4100162
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Primer: Linear Programming (LP)

Linear programming is an optimization method requiring 2 inputs:
@ A linear objective function.

® A set of linear constraints.

Example: Production planning problem

Product ‘ machine 1 machine 2 machine 3
A 40 24 0
B 24 48 60

Total machine running time is 8 hours/day.
Profit: 10 €/A and 40 €/B.

Question: How many units of product A and B need to be
manifactured in order to maximize profit?
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Expressed as LP Problem
@ maximize profit:
z=F(x1,x) =10-x1 +40 - x

@ subject to the linear constraints:

40-x1 +24-x0 < 480

24 -x1+48-xo < 480
60-x < 480
xt,x2 > 0

Admissible solutions:
*x1=0Ax=0 = 2z=0
* x» =0 x31 =12 — z=120
® x; =0 xo =38 — z=320

8/25



LP Problem: Graphical Solution

20

o b
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40-x1 +24 - x <480 <— XQS—E‘X1+2O
24 -x1 +48 - x <480 <— X2§—§‘X1+10
60~X2§480 < XQSS
z=10-x14+40-xp <= x2_—% x1+4—10 z
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LP Problem: Formal Formulation

The linear objective function is generally a sum of terms that
contain weighted measurable elements from a metabolic model.

Maximize:
Z=ci- x4+ x4+ ---=cl -x
Subject to:
ail-x1+an-xo+ - ap-xp < b
app-x1+axn-x+ - aym-xp< b
aml - X1+ am2-Xe+ -+ aAmn-Xn < by
A-x<b
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Variation Analysis: Single Parameter
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@ ATP yield curve is piecewise linear.

@ ATP yield varies between 2.75 (anaerobic) and 17.5 (aerobic).
© kinks correspond to changes in by-product secration rates.

O 3 distinct optimal phenotypes (0-1, 1-2, 2-6 O4 uptake rates).
® The ATP yield relies on different pathways.

There is no solution for oxygen uptake rates above 6, because the equations cannot be balanced.

Edwards JS, Palsson B@ (2000), Robustness Analysis of the Escherichia coli Metabolic Network, Biotech Progress

16(6):927-939 | doi:10.1021/bp0000712
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Isotope Labeling Experiments
I;:::J:Liﬁ» Cell culture

Measure @ Introduce a isotope labeled substrate into the
Hemmbote wbe® cell culture at metabolic steady state.

Network model

@ Allow the system to reach an isotopic steady
state.

Compare

bacs o1 1 © Measure (e.g. NMR, MS) relative labeling in

|Adjustf,uxes Ill metabolic intermediates and by products.

MO M1 M2 M3

Bsimuated @ Estimate fluxes from these measurements.

B pMeasured

® |sotope measurements provide many additional independent
constraints for MFA.

® The cell's flux state and the administered isotope label fully
and uniquely determine the isotopomere patterns of
metabolites at steady state.

° Quantitative interpretation requires a mathematical model,

which relates metabolic flux to isotopomere abundance.

Figure adapted from Duckwall CS, Murphy TA & Young JD (2013), Mapping cancer cell metabolism with!3C flux
analysis: Recent progress and future challenges, J Carcinog 12:13 | doi:10.4103/1477-3163.115422 (PMC3746411).
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Determination of Flux Split Ratios

Method works only at both metabolic and isotopic steady state.
In isotopic steady state the relative population all the isotopomeres

of a metabolite is constant.
A C D

WL[W]—D[m]—PH—DK

e |

T (5] W
0-0-0-0-0 ——P ———p 0-0%0
B F
@® A is a six carbon compound whose first atom is labeled.
® Competing/alternative pathways must introduce asymmetries.
© The pathway via intermediate B produces unlabeled C.
@ Via the “direct” pathway the label is retained.

@ The label enrichment in C is directly proportional to the rate
of vy relative to the total rate of A consumtion (v1 + 17).
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Isotopomers

Are defined as isomeres of a metabolit that differ only in the
labeling state of their individual atoms

(e.g. carbon [*2C, 13C], hydrogen ['H, 2H] or oxygen [0, 170, 180].

2N isotopomeres are possible for a metabolite with N atoms that
may be in one of two states (unlabeled or labeled).

Example (glucose CgH1504)

Atoms | # of Isotopomeres
6.400 x 10! (2° = 64)
7.260 x 102 (3% =726)
4.096 x 103 (212 = 4096)
(
(

2.621 x 10° 20 x 212 = 262144)
0 1.911 x 108 20 % 212 % 3% = 191102976)

onTON
I
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Measuring Isotopomere Distribution

Any experimental technique capable of detecting differences
between isotopomeres can be used to measure the labeling state.

The two dominating technologies are:
® Nuclear magnetic resonance spectroskopy (NMR).
® Mass spectrometry (MS).

Figure adapted from [Wiechert, 2001]
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Atom Transition Network

Estimating fluxes from isotopomere patterns is an inverse problem.

The atom-atom mapping
between reaction educts and
products must be known.

Getting this information is an NP-hard problem. Therefore most
approaches use the heuristic principle of

“minimal chemical distance”.
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Chemical Reactions and Atom-to-Atom Mapping
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chemically correct
Fujita S (1988), A Novel Approach t o Systematic Classification of Organic Reactions, J Chem Soc Perkin Trans 2
5:597-616 | 10.1039/P29880000597
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Recap: Central Carbon Metabolism

Pentose Phosphate

" Txylulose)

Input Sugars

Figure from Noor et al (2010), Central Carbon Metabolism as a Minimal Biochemical Walk between Precursors for
Biomass and Energy, J Mol Cell 39:809-820 | doi:10.1016/j.molcel.2010.08.031
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Carbon atom trace of Glycolysis
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(Bio)Chemical  reaction
databases usually list only
products, educts, and
(sometimes) the type of
transformation, but not

the atom map itself.

Rule composition can be
used to list all possible
atom traces, here for the
glycolysis (EMP) and the
Entner-Doudoroff ~ (ED)
pathway from central
carbon metabolism.

Andersen JL et al (2014), 50 Shades of Rule Composition: From Chemical Reactions to Higher Levels of Abstraction,

LNCS 8738:117-135 | doi:10.1007/978-3-319-10398-3_9
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Connection between stoichiometric Matrix and ODEs

2A+B—->C+ A B " c
C—A+B o7
[A] -1 1
d g o_d - | = Ve
wn-er-2(8)-(1 1) ()
Rate Model

mass action kinetics [A] = ky, - [C] — ky, - [A]? - [B]
Vo, = Koy - [A2 - [B] [B] = kp, - [C] = ky, - [A* - [B]
Vpr = Ko, - [C] [C]= Koy - [AFP - [B] = K, - [C]

Mass action kinetics is grounded in the theory of collision processes; alternative rate models to describe the reaction
velocities for enzyme systems are called Michaelis-Menten kinetics or Hill equations.
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Describing the Dynamics on the Network

Basic ldea:

@ Characterize the state of a system by a vector of state
variables (e.g. concentrations of chemical species).

® Formulate equations describing the change of state variables.

Solution:
Use ordrinary differantial equations (ODEs)

dX; .

e Fi(X1, X2, ..., XniP1,P2, -, Pm), i =1,2,....n
X; ... state variables e.g. concentrations
pi ... system parameters e.g. kinetic constants
t ... time
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Solving ODEs

Possibilities:
@ analytic solution.
® numeric solution.

Analytic solutions can be found for linear systems.

Advantage:
® solution is valid for all initial conditions.

® parameter dependencys can easily be discovered.

Nonlinear systems (typical case for (bio)chemical and genetic
systems) exhibit a wide range of dynamic behaviors and do not
typically admit analytic solutions.

The accuracy of the numeric solution strongly depends on the
used integration algorithm (e.g. Euler method).
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Example: Nonlinear (open) Reaction Sysem

——— A c——
% = Vi—V—V3 v, v

‘é—’f = w—yv .

‘é—f = w—Ww B p——
fiT? = V33— V5 ‘

Vi = kl i i

vo = ko [A] i |

vs = ks-[A]-[B] ]

Vg = k4 . [C] 02 =

vs = ks [D] n ‘ ‘ =

Note: because rate v3 depends on the product of [A] and [B], this
system of equations is nonlinear.

k1=3 mM/s, kp=2/s, k3=2.5/mM/s, ky=3/s and ks=4/s
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Dynamics of Isotopomere Patterns

— 1stturn
===3 2nd turn

...... » 3rd turn
3 washout

With each turn of the cycle further isotopomeres emerge.
Isotopomeres marked in dashed red are “washed out” over time.

Isotopomeres shown in unbroken black reside in the stationary
distribution.
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